2013-2014 Log1 Contest Round 1
 Theta Functions

Name: \qquad

4 points each

1	If $g(x)=-7 x+13+\frac{15}{x}$, find the value of $g(-3)$.	
2	What is the range of the real-valued function $f(x)=\sqrt{16-4 x^{2}} ?$	
3	Find a simplified fractional expression for the reciprocal of $h(x)=\frac{2}{2 x+3}+\frac{3}{x}$.	
4	If $g(x)=52 x-17$, find the value of $g^{-1}(19)$.	$D(A)=\|A\|$, the determinant of A. Find the value of $D\left(\left[\begin{array}{cc}5 & 5 \\ -3 & 7\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 12 & -1\end{array}\right]\right)$.
5	Define a function D, whose domain is all 2×2 matrices with real entries, by	

5 points each		
6	If $f(x)=\frac{x-3}{x+1}$, find an expression for $f(f(f(x)))$.	$f(x)$ is a function. $g(x)$ is found by translating $f(x)$ down 6 units, then left 4 units, then reflecting the resulting graph over the y-axis. Write an expression for $g(x)$ in terms of $f(x)$.
8	What is the greatest root of the function $h(x)=x^{3}+4 x^{2}-3 ?$	
9	If $f(x)=\frac{x^{2}-2}{x^{2}-4}$ with domain $-2<x<2$, find the maximum value of f.	
10	Find the greatest integer n such that $f(n)$ is an integer for $f(x)=\frac{(x+1)(x+4)}{(x+2)(x+3)}$.	

6 points each		
11	What is the inverse of the function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126} ?$	
12	What is the range of function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}$, in interval notation?	
13	A rocket is shot upward with an initial velocity of 96 feet/second from a height of 32 feet. The height in feet of the rocket t seconds after it is shot upward is given by the function $g(t)=-16 t^{2}+96 t+32$. What is the rocket's maximum height in feet?	
14	f is a real-valued function such that $f(f(x+1))=\|f(x+3)\|+2$. If $f(2)=5$ and	
$f(5)=4$, find the product of all possible values of $f(4)$.		

2013-2014 Log1 Contest Round 1
 Alpha Functions

Name: \qquad

4 points each

1	If $g(x)=-7 x+13+\frac{15}{x}$, find the value of $g(-3)$.
2	What is the range of the real-valued function $f(x)=\sqrt{16-4 x^{2}} ?$
3	Find a simplified fractional expression for the reciprocal of $h(x)=\frac{2}{2 x+3}+\frac{3}{x}$.

4 Define a function D, whose domain is all 2×2 matrices with real entries, by $D(A)=|A|$, the determinant of A. Find the value of $D\left(\left[\begin{array}{cc}5 & 5 \\ -3 & 7\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 12 & -1\end{array}\right]\right)$.

5 If $f(x)=\frac{x-3}{x+1}$, find an expression for $f(f(f(x)))$.

5 points each

6	A bug starts at the point $(-5,-4)$ and travels at constant velocity in a straight line, reaching the point $(7,5)$ in 10 seconds. At the same time the bug starts traveling, a spider starts at the point $(-4,5)$ and travels at constant velocity in a straight line, reaching the point $(3,-6)$ in 10 seconds. How many times do the bug and spider meet?	
7	$f(x)$ is a function. $g(x)$ is found by translating $f(x)$ down 6 units, then left 4 units, then reflecting the resulting graph over the y-axis. Write an expression for $g(x)$ in terms of $f(x)$.	
8	What is the greatest root of the function $h(x)=x^{3}+4 x^{2}-3 ?$	
9	If $f(x)=\frac{x^{2}-2}{x^{2}-4}$ with domain $-2<x<2$, find the maximum value of f.	
10	What is the inverse of the function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126} ?$	

6 points each		
11	What is the range of function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}$, in interval notation?	
12	Find the points where the functions $g(x)=x^{2}+3 x-2$ and $h(x)=-x^{2}-5 x-8$ intersect.	13 A rocket is shot upward with an initial velocity of 96 feet/second from a height of 32 feet. The height in feet of the rocket t seconds after it is shot upward is given by the function $g(t)=-16 t^{2}+96 t+32$. What is the rocket's maximum height in feet? 14 f is a real-valued function such that $f(f(x+1))=\|f(x+3)\|+2$. If $f(2)=5$ and $f(5)=4$, find the product of all possible values of $f(4)$. 15 Define a function h with domain positive integers such that $h(x)=$ the sum of the positive integral divisors of x. Find the value of $h(2013)$.

2013-2014 Log1 Contest Round 1
 Mu Functions

Name: \qquad

4 points each		
1	If $g(x)=-7 x+13+\frac{15}{x}$, find the value of $g(-3)$.	
2	What is the range of the real-valued function $f(x)=\sqrt{16-4 x^{2}} ?$	
3	Find a simplified fractional expression for the reciprocal of $h(x)=\frac{2}{2 x+3}+\frac{3}{x}$.	
4	If $f(x)=\frac{x-3}{x+1}$, find an expression for $f(f(f(x)))$.	
5	Let $f(x)=\ln \left(x+\sqrt{x^{2}+5}\right)$. Find the value of $f^{\prime}(2)$.	

5 points each		
6	A bug starts at the point $(-5,-4)$ and travels at constant velocity in a straight line, reaching the point $(7,5)$ in 10 seconds. At the same time the bug starts traveling, a spider starts at the point $(-4,5)$ and travels at constant velocity in a straight line, reaching the point $(3,-6)$ in 10 seconds. How many times do the bug and spider meet?	
7	$f(x)$ is a function. $g(x)$ is found by translating $f(x)$ down 6 units, then left 4 units, then reflecting the resulting graph over the y-axis. Write an expression for $g(x)$ in terms of $f(x)$.	
8	What is the greatest root of the function $h(x)=x^{3}+4 x^{2}-3 ?$	
9	Find the maximum value of the function $f(x)=-3 x^{3}-18 x^{2}+45 x+12$ on the interval $[-3,2]$.	
10	What is the inverse of the function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126} ?$	

6 points each		
11	What is the range of function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}$, in interval notation?	
12	Find the points where the functions $g(x)=x^{2}+3 x-2$ and $h(x)=-x^{2}-5 x-8$ intersect.	
13	If $g(x)=2 x^{3}-3 x^{2}+6 x-1-\frac{1}{x}$, then $\int_{2}^{4} g(x) d x=a-\ln b$, where a and b are integers. Find the value of $\sqrt{a+b}$.	
14	f is a real-valued function such that $f(f(x+1))=\|f(x+3)\|+2$. If $f(2)=5$ and $f(5)=4$, find the product of all possible values of $f(4)$.	
15	If $F(x)=\int \tan (4 x) d x$ such that $F(0)=0$, then $F\left(\frac{\pi}{6}\right)=\ln A$, where $A>0$ is real.	

2013-2014 Log1 Contest Round 1
 Theta Functions

Name: \qquad

4 points each

1	If $g(x)=-7 x+13+\frac{15}{x}$, find the value of $g(-3)$.	29
2	What is the range of the real-valued function $f(x)=\sqrt{16-4 x^{2}} ?$	$0 \leq y \leq 4$ or $[0,4]$
3	Find a simplified fractional expression for the reciprocal of $h(x)=\frac{2}{2 x+3}+\frac{3}{x}$.	$\frac{2 x^{2}+3 x}{8 x+9}$
4	If $g(x)=52 x-17$, find the value of $g^{-1}(19)$.	$\frac{9}{13}$
5	Define a function D, whose domain is all 2×2 matrices with real entries, by $D(A)=\|A\|$, the determinant of A. Find the value of $D\left(\left[\begin{array}{cc}5 & 5 \\ -3 & 7\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 12 & -1\end{array}\right]\right)$.	

5 points each		
6	If $f(x)=\frac{x-3}{x+1}$, find an expression for $f(f(f(x)))$.	x
7	$f(x)$ is a function. $g(x)$ is found by translating $f(x)$ down 6 units, then left 4 units, then reflecting the resulting graph over the y-axis. Write an expression for $g(x)$ in terms of $f(x)$.	$g(x)=$ $f(-x+4)-6$ or equiv.
8	What is the greatest root of the function $h(x)=x^{3}+4 x^{2}-3 ?$	$\frac{-3+\sqrt{21}}{2}$
9	If $f(x)=\frac{x^{2}-2}{x^{2}-4}$ with domain $-2<x<2$, find the maximum value of f.	$\frac{1}{2}$
10	Find the greatest integer n such that $f(n)$ is an integer for $f(x)=\frac{(x+1)(x+4)}{(x+2)(x+3)}$.	-1

6 points each		
11	What is the inverse of the function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126} ?$	$f^{-1}(x)=x+4$
12	What is the range of function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}$, in interval notation?	$(-\infty,-10)$ $\cup(-10,-7)$ $\cup(-7,3) \cup$ $(3, \infty)$
13	A rocket is shot upward with an initial velocity of 96 feet/second from a height of 32 feet. The height in feet of the rocket t seconds after it is shot upward is given by the function $g(t)=-16 t^{2}+96 t+32$. What is the rocket's maximum height in feet?	176
14	f is a real-valued function such that $f(f(x+1))=\|f(x+3)\|+2$. If $f(2)=5$ and $f(5)=4$, find the product of all possible values of $f(4)$.	2
15	Define a function h with domain positive integers such that $h(x)=$ the sum of the positive integral divisors of x. Find the value of $h(2013)$.	2976

2013-2014 Log1 Contest Round 1
 Alpha Functions

Name: \qquad

4 points each		
1	If $g(x)=-7 x+13+\frac{15}{x}$, find the value of $g(-3)$.	29
2	What is the range of the real-valued function $f(x)=\sqrt{16-4 x^{2}} ?$	$0 \leq y \leq 4$ or $[0,4]$
3	Find a simplified fractional expression for the reciprocal of $h(x)=\frac{2}{2 x+3}+\frac{3}{x}$.	$\frac{2 x^{2}+3 x}{8 x+9}$
4	Define a function D, whose domain is all 2×2 matrices with real entries, by $D(A)=\|A\|$, the determinant of A. Find the value of $D\left(\left[\begin{array}{cc}5 & 5 \\ -3 & 7\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 12 & -1\end{array}\right]\right)$.	1200
5	If $f(x)=\frac{x-3}{x+1}$, find an expression for $f(f(f(x)))$.	x

5 points each		
6	A bug starts at the point $(-5,-4)$ and travels at constant velocity in a straight line, reaching the point $(7,5)$ in 10 seconds. At the same time the bug starts traveling, a spider starts at the point $(-4,5)$ and travels at constant velocity in a straight line, reaching the point $(3,-6)$ in 10 seconds. How many times do the bug and spider meet?	0
7	$f(x)$ is a function. $g(x)$ is found by translating $f(x)$ down 6 units, then left 4 units, then reflecting the resulting graph over the y-axis. Write an expression for $g(x)$ in terms of $f(x)$.	$g(x)=$ $f(-x+4)-6$ or equiv.
8	What is the greatest root of the function $h(x)=x^{3}+4 x^{2}-3 ?$ 9	If $f(x)=\frac{x^{2}-2}{x^{2}-4}$ with domain $-2<x<2$, find the maximum value of f.
10	What is the inverse of the function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126} ?$	$\frac{1}{2}$

6 points each		
11	What is the range of function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}$, in interval notation?	$(-\infty,-10)$ $\cup(-10,-7)$ $\cup(-7,3) \cup$ $(3, \infty)$
12	Find the points where the functions $g(x)=x^{2}+3 x-2$ and $h(x)=-x^{2}-5 x-8$ intersect.	$(-3,-2)$ and $(-1,-4)$
13	A rocket is shot upward with an initial velocity of 96 feet/second from a height of 32 feet. The height in feet of the rocket t seconds after it is shot upward is given by the function $g(t)=-16 t^{2}+96 t+32$. What is the rocket's maximum height in feet?	176
14	f is a real-valued function such that $f(f(x+1))=\|f(x+3)\|+2$. If $f(2)=5$ and $f(5)=4$, find the product of all possible values of $f(4)$.	2
15	Define a function h with domain positive integers such that $h(x)=$ the sum of the positive integral divisors of x. Find the value of $h(2013)$.	2976

2013-2014 Log1 Contest Round 1
 Mu Functions

Name: \qquad

4 points each		
1	If $g(x)=-7 x+13+\frac{15}{x}$, find the value of $g(-3)$.	29
2	What is the range of the real-valued function $f(x)=\sqrt{16-4 x^{2}} ?$	$0 \leq y \leq 4$ or $[0,4]$
3	Find a simplified fractional expression for the reciprocal of $h(x)=\frac{2}{2 x+3}+\frac{3}{x}$.	$\frac{2 x^{2}+3 x}{8 x+9}$
4	If $f(x)=\frac{x-3}{x+1}$, find an expression for $f(f(f(x)))$.	x
5	Let $f(x)=\ln \left(x+\sqrt{x^{2}+5}\right)$. Find the value of $f^{\prime}(2)$.	$\frac{1}{3}$

5 points each		
6	A bug starts at the point $(-5,-4)$ and travels at constant velocity in a straight line, reaching the point $(7,5)$ in 10 seconds. At the same time the bug starts traveling, a spider starts at the point $(-4,5)$ and travels at constant velocity in a straight line, reaching the point $(3,-6)$ in 10 seconds. How many times do the bug and spider meet?	0
7	$f(x)$ is a function. $g(x)$ is found by translating $f(x)$ down 6 units, then left 4 units, then reflecting the resulting graph over the y-axis. Write an expression for $g(x)$ in terms of $f(x)$.	$g(x)=$ $f(-x+4)-6$ or equiv.
8	What is the greatest root of the function $h(x)=x^{3}+4 x^{2}-3 ?$ 9 Find the maximum value of the function $f(x)=-3 x^{3}-18 x^{2}+45 x+12$ on the interval $[-3,2]$. 10	What is the inverse of the function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126} ?$

6 points each		
11	What is the range of function $f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}$, in interval notation?	$(-\infty,-10)$ $\cup(-10,-7)$ $(-7,3) \cup$ $(3, \infty)$
12	Find the points where the functions $g(x)=x^{2}+3 x-2$ and $h(x)=-x^{2}-5 x-8$ intersect.	$(-3,-2)$ and $(-1,-4)$
13	If $g(x)=2 x^{3}-3 x^{2}+6 x-1-\frac{1}{x}$, then $\int_{2}^{4} g(x) d x=a-\ln b$, where a and b are integers. Find the value of $\sqrt{a+b}$.	10
14	f is a real-valued function such that $f(f(x+1))=\|f(x+3)\|+2$. If $f(2)=5$ and $f(5)=4$, find the product of all possible values of $f(4)$.	$\frac{1}{2}$
15	If $F(x)=\int \tan (4 x) d x$ such that $F(0)=0$, then $F\left(\frac{\pi}{6}\right)=\ln A$, where $A>0$ is real.	

Mu	Al	Th	Solution
1	1	1	$g(-3)=-7(-3)+13+\frac{15}{-3}=21+13-5=29$
2	2	2	Since f is a root function, the minimum value of the function is 0 . Also, $4 x^{2}$ has minimum value 0 , so the maximum value of f is $\sqrt{16}=4$. Since all values in between those two are also achievable, the range is $0 \leq y \leq 4$ or $[0,4]$.
3	3	3	$h(x)=\frac{2}{2 x+3}+\frac{3}{x}=\frac{2 x+3(2 x+3)}{x(2 x+3)}=\frac{8 x+9}{2 x^{2}+3 x}$, so the reciprocal expression is $\frac{2 x^{2}+3 x}{8 x+9}$.
		4	$52 g^{-1}(19)-17=19 \Rightarrow 52 g^{-1}(19)=36 \Rightarrow g^{-1}(19)=\frac{36}{52}=\frac{9}{13}$
	4	5	$D\left(\left[\begin{array}{cc}5 & 5 \\ -3 & 7\end{array}\right]\left[\begin{array}{cc}0 & -2 \\ 12 & -1\end{array}\right]\right)=D\left(\left[\begin{array}{cc}5 & 5 \\ -3 & 7\end{array}\right]\right) D\left(\left[\begin{array}{cc}0 & -2 \\ 12 & -1\end{array}\right]\right)=50 \cdot 24=1200$
4	5	6	$\begin{aligned} & f(f(x))=\frac{\frac{x-3}{x+1}-3}{\frac{x-3}{x+1}+1}=\frac{x-3-3(x+1)}{x-3+(x+1)}=\frac{-2 x-6}{2 x-2}=\frac{-x-3}{x+1} \text {, so } f(f(f(x)))=f\left(\frac{-x-3}{x-1}\right) \\ & =\frac{\frac{-x-3}{x-1}-3}{\frac{-x-3}{x-1}+1}=\frac{-x-3-3(x-1)}{-x-3+(x-1)}=\frac{-4 x}{-4}=x \end{aligned}$
5			$f^{\prime}(x)=\frac{1+\frac{2 x}{2 \sqrt{x^{2}+5}}}{x+\sqrt{x^{2}+5}}=\frac{1}{\sqrt{x^{2}+5}} \Rightarrow f^{\prime}(2)=\frac{1}{3}$
6	6		The bug's parametric equations of motion are $x=-5+\frac{6}{5} t$ and $y=-4+\frac{9}{10} t$. The spider's parametric equations of motion are $x=-4+\frac{7}{10} t$ and $y=5-\frac{11}{10} t$. Setting the two x equations equal yields $t=2$ while setting the two y equations equal yields $t=\frac{9}{2}$. Therefore, the bug and spider never occupy the same space at the same time.
7	7	7	The resulting functions, in order, are $f(x)-6, f(x+4)-6$, and $f(-x+4)-6$, so $g(x)=f(-x+4)-6$.
8	8	8	$h(x)=x^{3}+4 x^{2}-3=(x+1)\left(x^{2}+3 x-3\right)$, so the roots of h are -1 and $\frac{-3 \pm \sqrt{21}}{2}$. The only positive root of the three is $\frac{-3+\sqrt{21}}{2}$, so it is the greatest.

	9	9	For $f(x)=\frac{x^{2}-2}{x^{2}-4}$, vertical asymptotes are at $x=2$ and $x=-2$. Further, the graph of f opens downward and is symmetric with respect to the y-axis, so the maximum value is at $x=0$, making the maximum value $\frac{1}{2}$.
9			$f^{\prime}(x)=-9 x^{2}-36 x+45=-9(x+5)(x-1)$, so the only critical number for f in the interval is 1. $f(-3)=-204, f(2)=6$, and $f(1)=36$, so the maximum value is 36 .
		10	$f(x)=\frac{(x+1)(x+4)}{(x+2)(x+3)}=\frac{x^{2}+5 x+4}{x^{2}+5 x+6}=1-\frac{2}{(x+2)(x+3)}$, and the only consecutive integers whose product divides 2 are -2 and -1 or 1 and 2 , so setting the denominator of the expression equal to those two cases yields $x=-4$ and $x=-1$, respectively. Therefore, the greatest value of n would be -1 .
10	10	11	$f(x)=\frac{x^{4}-2 x^{3}-53 x^{2}+54 x+504}{x^{3}+2 x^{2}-45 x-126}=\frac{(x-7)(x+6)(x+3)(x-4)}{(x-7)(x+6)(x+3)}=x-4$, so the inverse is $f^{-1}(x)=x+4$.
11	11	12	From the previous problem, $f(x)=x-4$ as long as $x \neq-6,-3,7$. Without the restriction, the range would be all reals, so the range is all reals except the y-values achieved by plugging in those x-values. Therefore, the range of the function is $(-\infty,-10) \cup(-10,-7) \cup(-7,3) \cup(3, \infty)$.
12	12		$\begin{aligned} & -x^{2}-5 x-8=x^{2}+3 x-2 \Rightarrow 0=2 x^{2}+8 x+6=2(x+3)(x+1) \Rightarrow x=-3 \text { or } x=-1 . g(-3) \\ & =h(-3)=-2 \text { and } g(-1)=h(-1)=-4, \text { so the points are }(-3,-2) \text { and }(-1,-4) . \end{aligned}$
	13	13	Since the graph of g is a parabola opening downward, the maximum height is at the vertex. The t-value at the vertex is $-\frac{96}{2(-16)}=3$, so the maximum height is $g(3)=-16(3)^{2}+96(3)+32=176$ feet.
13			$\begin{aligned} & \int_{2}^{4} g(x) d x=\left.\left(\frac{1}{2} x^{4}-x^{3}+3 x^{2}-x-\ln \|x\|\right)\right\|_{2} ^{4}=(128-64+48-4-\ln 4)-(8-8+12-2-\ln 2) \\ & =98-\ln 2 \text {, so } a=98 \text { and } b=2 . \text { Therefore, } \sqrt{a+b}=\sqrt{98+2}=\sqrt{100}=10 . \end{aligned}$
14	14	14	$\begin{aligned} & 4=f(5)=f(f(2))=f(f(1+1))=\|f(1+3)\|+2 \Rightarrow\|f(4)\|=2 \Rightarrow f(4)= \pm 2 . \text { However, } \\ & f(4)=f(f(5))=f(f(4+1))=\|f(4+3)\|+2>0 \text {, implying that } f(4)=2 \text { only. } \end{aligned}$
	15	15	Since $2013=3 \cdot 11 \cdot 61$ is the prime factorization of 2013, $h(2013)=(1+3)(1+11)(1+61)=2976$.
15			$\begin{aligned} & F(x)=\int \tan (4 x) d x=\frac{1}{4} \ln \|\sec 4 x\|+C \Rightarrow 0=F(0)=\frac{1}{4} \ln \|\sec 0\|+C=C . \text { Therefore, } \\ & F(x)=\frac{1}{4} \ln \|\sec 4 x\| \cdot F\left(\frac{\pi}{6}\right)=\frac{1}{4} \ln \left\|\sec \frac{2 \pi}{3}\right\|=\frac{1}{4} \ln 2=\ln \sqrt[4]{2} \Rightarrow A=\sqrt[4]{2} . \text { Therefore, } \sum_{i=2}^{\infty}\left(\frac{1}{A^{4 i}}\right) \\ & =\sum_{i=2}^{\infty}\left(\frac{1}{2^{i}}\right)=\frac{1 / 4}{1-1 / 2}=\frac{1}{2} \end{aligned}$

