For all questions, answer E. "NOTA" means none of the above answers is correct.

1. Evaluate: $\int_{0}^{\pi/3} \cos^2 x dx$

$$A) \ \frac{4\pi + 3\sqrt{3}}{24}$$

B)
$$\frac{2\pi + 3\sqrt{3}}{12}$$

C)
$$\frac{4\pi + 3\sqrt{3}}{12}$$

$$D) \frac{2\pi + 3\sqrt{3}}{6}$$

2. What is the area enclosed by the polar curve $r = \cos 3\theta$?

A)
$$\frac{\pi}{12}$$
 B) $\frac{\pi}{8}$ C) $\frac{\pi}{4}$ D) $\frac{\pi}{2}$

B)
$$\frac{\pi}{8}$$

C)
$$\frac{\pi}{4}$$

D)
$$\frac{\pi}{2}$$

3. Let $f(x, y) = xe^y + xy^2$. What is $\nabla f(2,1)$ (that is, the gradient of f at (2,1))?

A)
$$(e+1)\hat{x} + (2e+4)\hat{y}$$
 B) $(2e+1)\hat{x} + (e+4)\hat{y}$ C) $(e+4)\hat{x} + (2e+1)\hat{y}$ D) $(2e+4)\hat{x} + (e+1)\hat{y}$ E) NOTA

B)
$$(2e+1)\hat{x} + (e+4)\hat{y}$$

C)
$$(e+4)\hat{x} + (2e+1)\hat{y}$$

D)
$$(2e+4)\hat{x} + (e+1)\hat{y}$$

4. What is the surface area formed by rotating the curve $y = x^2$ on the domain $x \in [0,2]$ around the y-axis?

A)
$$\frac{17\sqrt{17}-1}{12}$$

B)
$$\frac{17\sqrt{17}}{12}$$

C)
$$\frac{34\sqrt{17}}{3}$$

D)
$$\frac{34\sqrt{17}-2}{3}$$

5. What is the volume of the solid formed by taking a sphere of radius 3 and excluding any volume within 60 degrees of a plane passing through the sphere's center?

A)
$$18\pi(2-\sqrt{3})$$
 B) $9\pi\sqrt{3}$

B)
$$9\pi\sqrt{3}$$

C)
$$18\pi$$

D)
$$18\pi\sqrt{3}$$

6. Given that $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, what is $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + z^2\hat{y} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $F(x, y, z) = (x + y)\hat{x} + xy\sqrt{z}\hat{z}$, where $\nabla \cdot F(a.k.a.)$ div $\nabla \cdot F(a.k.a.)$ div $\nabla \cdot F(a.k.a.)$ the point (2,-1,1)?

C)
$$\hat{x} + \hat{y} - 2\hat{z}$$

D)
$$2\hat{x} + \hat{z}$$

Advanced Calculus Test 2007 Mu Alpha Theta National Convention

7. Let $f(t) = \sin t\hat{x} + \cos t\hat{y} + t\hat{z}$. What is $f''(-\pi/4)$?

A)
$$\frac{\sqrt{2}}{2}\hat{x} - \frac{\sqrt{2}}{2}\hat{y}$$

B)
$$\frac{\sqrt{2}}{2}\hat{x} + \frac{\sqrt{2}}{2}\hat{y}$$

A)
$$\frac{\sqrt{2}}{2}\hat{x} - \frac{\sqrt{2}}{2}\hat{y}$$
 B) $\frac{\sqrt{2}}{2}\hat{x} + \frac{\sqrt{2}}{2}\hat{y}$ C) $\frac{\sqrt{2}}{2}\hat{x} + \frac{\sqrt{2}}{2}\hat{y} - \hat{z}$

D)
$$\frac{\sqrt{2}}{2}\hat{x} + \frac{\sqrt{2}}{2}\hat{y} + \hat{z}$$
 E) NOTA

8. What is the volume of the solid formed by taking an ellipse with semimajor axes of length 4 and semiminor axes of length 2 centered at (-4,6) with its major axis parallel to the line y = 5x + 17 and rotating it around the line y = x?

A)
$$20\pi^2\sqrt{2}$$

B)
$$40\pi^2 \sqrt{2}$$

C)
$$60\pi^2\sqrt{2}$$

D)
$$80\pi^2\sqrt{2}$$

9. What is the approximate value of ln 2 found using the first 4 nonzero terms of the Taylor polynomial for $\ln x$ centered at x = 1 (round to the nearest thousandth)?

10. Evaluate: $\int_{-\pi/2}^{\pi} x^2 \cos x dx$

A)
$$\frac{\pi^2 - 8\pi - 8}{4}$$

B)
$$\frac{\pi^2 + 4\pi - 4}{4}$$

A)
$$\frac{\pi^2 - 8\pi - 8}{4}$$
 B) $\frac{\pi^2 + 4\pi - 4}{4}$ C) $\frac{-\pi^2 + 8\pi + 8}{4}$

D)
$$\frac{\pi^2 + 8\pi - 8}{4}$$

11. Let $f(x, y) = x^2 y$ and consider the triangular region A with vertices (0,0), (1,0), and (0,1). Evaluate: $\iint_A f(x, y) dA$

A)
$$\frac{1}{60}$$

B)
$$\frac{1}{30}$$

A)
$$\frac{1}{60}$$
 B) $\frac{1}{30}$ C) $\frac{1}{10}$ D) $\frac{1}{5}$

D)
$$\frac{1}{5}$$

12. Evaluate: $\int_{0}^{1} \sqrt{1-x^2} dx$

A)
$$\frac{\pi}{4}$$

A)
$$\frac{\pi}{4}$$
 B) 1 C) $\frac{\pi + 2}{4}$ D) $\frac{\pi}{2}$

D)
$$\frac{\pi}{2}$$

13. Let the position function of a particle, f(t), be defined as follows:

 $f(t) = t\hat{x} + t^2\hat{y} + \cos t\hat{z}$. What is the speed of the particle at time $t = \frac{\pi}{2}$?

- A) $\sqrt{\pi^2 1}$ B) π
- C) $\sqrt{\pi^2 + 1}$
- D) $\sqrt{\pi^2 + 2}$ E) NOTA
- 14. For positive integers a and b evaluate: $\lim_{x\to\infty} \frac{x\log_a x}{x\log_b x}$
 - A) $\frac{1}{\log b}$ B) $\log_a b$ C) $\log_b a$ D) $a \log_b a$ E) NOTA

- 15. The centroid of the region bound by the curves $y = \sqrt{x}$ and y = x is the point (a,b).

What is $\frac{a}{b}$?

- A) $\frac{1}{5}$ B) $\frac{2}{5}$ C) $\frac{5}{2}$ D) 5
- E) NOTA

- 16. Evaluate: $\lim_{(x,y)\to(2,1)} \frac{xy}{xy^3 + xy}$
 - A) $\frac{1}{5}$ B) $\frac{2}{5}$ C) $\frac{1}{2}$
- D) 1
- E) NOTA
- 17. Let $L = \sqrt[3]{\frac{\pi}{3}}$. Evaluate: $\int_{0}^{L} \int_{0}^{z} \int_{0}^{2} xy \cos z^3 dx dy dz$
 - A) $\frac{\sqrt{3}}{6}$ B) $\frac{\sqrt{3}}{4}$ C) $\frac{\sqrt{3}}{3}$ D) $\frac{\sqrt{3}}{2}$

- E) NOTA

- 18. Evaluate: $\int_{1}^{2} \ln x dx$
 - A) $\ln 2 2$

- B) $2 \ln 2 2$
- C) $\ln 2 1$

D) $2 \ln 2 - 1$

E) NOTA

Advanced Calculus Test 2007 Mu Alpha Theta National Convention

19. ′	The coordinates of a particle are given as a function of time:	$x(t) = t^2, y(t) = t^3$. What
(distance does the particle traverse from time $t = 0$ to $t = \frac{\sqrt{5}}{3}$?	

- A) $\frac{37}{54}$ B) $\frac{19}{27}$ C) $\frac{19}{18}$ D) $\frac{38}{3}$

- E) NOTA

20. Evaluate:
$$\int_{0}^{1} \int_{0}^{z^{2}} \int_{1}^{2^{y}} \frac{z^{3} e^{y^{2}}}{x} dx dy dz$$

- A) $\frac{(e-2)\ln 2}{4}$
- B) $\frac{(e-2)\ln 2}{2}$ C) $\frac{(4e-5)\ln 2}{8}$
- D) $\frac{(4e-5)\ln 2}{4}$
- E) NOTA
- 21. Consider the function $f(x, y) = (x-1)^2 + y^2 + 1$ with a domain consisting of a disk of radius two centered at the origin. What is the absolute maximum value of f minus the absolute minimum value of f?
 - A)0
- B) 1
- C) 8
- D) 9
- E) NOTA
- 22. A square with sides of length 3 and centered at (5,9) is rotated about the line y = b to form a solid with a volume of 72π . What is the sum of all possible values of b?
 - A) 5

B) 10

C) 18

- D) Cannot be determined
- E) NOTA
- 23. Evaluate: $\int_{0}^{1} x\sqrt{1-x} dx$
- A) $\frac{1}{5}$ B) $\frac{4}{15}$ C) $\frac{14}{15}$ D) $\frac{16}{15}$ E) NOTA

- 24. A cylinder's base is a circle of radius 2 centered at the origin in the x-y plane extending a height of 4 in the positive z direction. The density of the cone is given: $\rho(x, y, z) = (x^2 + y^2)z$. What is the mass of the cylinder?
 - A) $\frac{128\pi}{3}$ B) 64π C) $\frac{256\pi}{3}$ D) 256π E) NOTA

Advanced Calculus Test 2007 Mu Alpha Theta National Convention

25. Consider the curve $y = x^2$ from (0,0) to (3,9) denoted C and the function $f(x, y) = \frac{y}{x}$. What is $\int_{C} f(x, y) ds$?

A) 3

B) $\frac{37\sqrt{37}-1}{12}$

C) $\frac{54\sqrt{37}}{3}$

D) $\frac{54\sqrt{37}-1}{3}$

E) NOTA

26. What is the area of the cardioid described by the polar equation $r = 1 + \cos \theta$?

A) π

B) 2π

C) 3π

D) 4π

E) NOTA

27. Let $z = xy^2 \sin xy$. What is $\frac{\partial z}{\partial y}$ evaluated when $x = \frac{\pi}{3}$ and y = 2?

A) $\frac{2(\sqrt{3}-2\pi)}{3}$

B) $\frac{2\pi(\sqrt{3}-\pi)}{3}$ C) $\frac{2(3\sqrt{3}-2\pi)}{3}$

D) $\frac{2\pi(3\sqrt{3}-\pi)}{2}$

E) NOTA

28. A particle's coordinates are described as a function of time: $x(t) = e^{t^2}$, $y(t) = 2e^{3t}$. Let θ be defined as the acute angle between the x-axis and the tangent line to the particle's trajectory at time t = 2. What is $\tan \theta$?

A) $\frac{4e^{-2}}{3}$ B) $\frac{3e^2}{4}$ C) $\frac{3e^2}{3}$ D) $3e^2$ E) NOTA

29. Let $f(x) = \frac{(x^2 - 4)(x^2 - x - 12)}{(x^2 - 5x + 6)(x + 4)}$. How many asymptotes does f(x) have?

A) 1

B) 2

C) 3

D) 4

E) NOTA

30. Given the relation $V = \pi r^2 h$, what is $\frac{\partial V}{\partial r}$ when r = 2 and h = 3?

A) 4π

B) 8π

C) 12π

D) 16π

E) NOTA