1. \(u \cdot v = 2 - 3 + 0 = -1 \). \textbf{A}

2. \(u \times v = \begin{vmatrix} i & j & k \\ 2 & 3 & -5 \\ 1 & -1 & 0 \end{vmatrix} = -5i - 5j - 5k \). \textbf{E}

3. \(u \cdot v = 3 - \sqrt{3} + \sqrt{3} + 1 = 4 \). \(||u|| = \sqrt{3 + 1} = 2 \). \(||v|| = \sqrt{3 - 2\sqrt{3} + 1 + 3 + 2\sqrt{3} + 1} = 2\sqrt{2} \).

\[
\cos(\theta) = \frac{4}{2 \cdot 2\sqrt{2}} = \frac{\sqrt{2}}{2}. \quad \theta = 45^\circ. \textbf{C}
\]

4. \(2A - 3B = \begin{bmatrix} 3 & -10 \\ -11 & 8 \end{bmatrix} \). \(\det(2A - 3B) = 24 - 110 = -86 \). \textbf{E}

5. \[
\cos(\theta) = \frac{x \cdot y}{\|x\| \|y\|} = \frac{\sin(t) + \cos(t)}{\sqrt{2}}. \quad -\sin(\theta)dt = \frac{\cos(t) - \sin(t)}{\sqrt{2}} dt. \quad \frac{d\theta}{dt} = \frac{\sin(t) - \cos(t)}{\sin(\theta) \cdot \sqrt{2}}.
\]

\[
\sin(\theta) = \frac{\|x \times y\|}{\|x\| \|y\|}. \quad x \times y = \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 0 & \sin(t) & \cos(t) \end{vmatrix} = (\cos(t) - \sin(t))k. \quad \sin(\theta) = \frac{\|x \times y\|}{\|x\| \|y\|}.
\]

\[
\frac{d\theta}{dt} = \frac{\sin(t) - \cos(t)}{\cos(t) - \sin(t)} = 1 \text{ when } t = \frac{\pi}{3}. \textbf{A}
\]

6. I is true by definition and II follows from I. Since the eigenvalues are the roots of the characteristic polynomial, and since the characteristic polynomial of an \(n \times n \) matrix is an \(n \)th order polynomial, there are \(n \) roots by the Fundamental Theorem of Algebra. Since \(\lambda \) is an eigenvalue of \(A \), there is a vector \(x \) such that \(Ax = \lambda x \). Then \(A^2 x = \lambda A x = \lambda^2 x \) and hence \(\lambda^2 \) is an eigenvalue of \(A^2 \), so IV is true. \textbf{D}

7. A matrix is singular when its determinant is equal to 0. \[
\begin{vmatrix} x & 2 & 0 \\ -1 & 1 & 1 \\ x & 0 & 2 \end{vmatrix} = 4x + 4 = 0. \quad x = -1. \textbf{A}
\]

8. \(\{t, \cos(kt)\} = \int_{-\pi}^{\pi} t \cos(kt) dt \). Notice that \(t \cos(kt) \) is an odd function, so the integral is 0 and hence \(a_k = 0 \). \textbf{B}

9. \(\sin(\theta) = \frac{||u \times v||}{||u|| ||v||} \) and \(\cos(\theta) = \frac{u \cdot v}{||u|| ||v||} \), so \(\frac{||u \times v||^2}{||u||^2 ||v||^2} + \frac{(u \cdot v)^2}{||u||^2 ||v||^2} = 1 \). Therefore \((u \cdot v)^2 + ||u \times v||^2 = ||u||^2 ||v||^2 \). \textbf{C}

10. Adding a scalar multiple of one row to another row does not alter a matrix’s determinant. Multiplying a row by a scalar multiple increases a matrix’s determinant by a factor of the scalar. The determinant of the new matrix is therefore 12 \(\cdot 5 = 60 \). \textbf{C}
11. \(\text{det}(A) = \begin{vmatrix} 4x+1 & 5-2x \\ 2-2x & x-2 \end{vmatrix} = (4x+1)(x-2) - (5-2x)(2-2x) = 7x - 12. \)

\(A^{-1} = \begin{bmatrix} x-2 & 2-5x \\ 7x-12 & 7x-12 \\ 2x-2 & 4x+1 \\ 7x-12 & 7x-12 \end{bmatrix}. \lim_{x \to \infty} A^{-1} = \begin{bmatrix} 1 \\ 7 \\ 2 \\ 7 \end{bmatrix}. \) The largest entry is \(\frac{4}{7}. \) C

12. Notice that after \(t \) seconds the angle between \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) is \(\frac{\pi}{4} + \frac{\pi}{32} t. \) Geometrically, \(\|\mathbf{v}_1 - \mathbf{v}_2\| \) is the distance between the heads of the two vectors. That is, it is the distance between the points \((1,0)\) and \(\left(\cos\left(\frac{\pi}{4} + \frac{\pi}{32} t\right), \sin\left(\frac{\pi}{4} + \frac{\pi}{32} t\right)\right). \) Then

\[\|\mathbf{v}_1 - \mathbf{v}_2\| = \sqrt{\left(1 - \cos\left(\frac{\pi}{4} + \frac{\pi}{32} t\right)\right)^2 + \sin^2\left(\frac{\pi}{4} + \frac{\pi}{32} t\right)} = \sqrt{2 - 2\cos\left(\frac{\pi}{4} + \frac{\pi}{32} t\right)}. \]

\[\frac{d}{dt}\|\mathbf{v}_1 - \mathbf{v}_2\| = \frac{2\sin\left(\frac{\pi}{4} + \frac{\pi}{32} t\right)\cdot \frac{\pi}{32}}{2\sqrt{2 - 2\cos\left(\frac{\pi}{4} + \frac{\pi}{32} t\right)}}. \] When \(t = 8, \) \(\frac{d}{dt}\|\mathbf{v}_1 - \mathbf{v}_2\| = \frac{\pi \sqrt{2}}{64}. \) B

13. I is a \(3 \times 3 \) matrix. II is a \(2 \times 2 \) matrix. III is a \(3 \times 3 \) matrix. IV is a \(2 \times 2 \) matrix. D

14. The area of \(R \) is given by

\[\int_{0}^{1} (2-x^2-x^3) \, dx = 2x - x^3 - x^4 \bigg|_{0}^{1} = \frac{17}{12}. \] The transformation matrix is

\[T = \begin{bmatrix} 5 & -2 \\ 1 & 2 \end{bmatrix} \] and \(\det T = 12. \) The area of \(R' \) is the area of \(R \) multiplied by the determinant of the transformation matrix. \(\frac{17}{12} \cdot 12 = 17. \) C

15. The first equation implies \(x = 6 - z. \) Plugging into the second equation gives \(y + z = 6. \) This combined with the first equation implies \(x = y \) and the vector \(\mathbf{v} \) will be of the form \(\mathbf{v} = (t, t, 6 - t). \)

\[\|\mathbf{v}\| = \sqrt{3t^2 - 12t + 36}. \] We can minimize \(3t^2 - 12t + 36 \) for simplicity. \(6t - 12 = 0 \) so \(t = 2 \) and hence \(\|\mathbf{v}\| = \sqrt{4 + 4 + 16} = 2\sqrt{6}. \) B

16. Notice that \(y = x^4 + 3 \) and \(x \in [1, \sqrt{2}]. \)

\[\int_{1}^{\sqrt{2}} (x^4 + 3) \, dx = \left[\frac{x^5}{5} + 3x \right]_{1}^{\sqrt{2}} = \frac{19\sqrt{2} - 16}{5}. \] E

17. We want to find a vector \((x, y, z)\) such that \(x + z = 0 \) and \(-x + 2y + z = 0. \) Choose \(x = 1. \) Then \(z = -1 \) and \(y = 1. \) \((1,1,-1)\) is normal to both vectors. D

18. \(|A_n| = \sqrt{n^2 + 2n - \sqrt{n^2 + 2n + 1}} = -\frac{1}{\sqrt{n^2 + 2n + \sqrt{n^2 + 2n + 1}}}. \lim_{n \to \infty} |A_n| = 0. \) A
19. The area of the triangle is the absolute value of \[\left| \begin{array}{c} 0 \\ t/2 \\ 2 \end{array} \right| = \left| 4t - t^2 \right| \times 1 = \left| 4t - \frac{5}{4}t^2 \right|. \] Since this does not change signs when \(t \in [0,3] \), we need only maximize \(4t - \frac{5}{4}t^2 \). \(4 - \frac{5}{2}t = 0 \) so \(t = \frac{8}{5} \). The area is then \(4 \cdot \frac{8}{5} - \frac{5}{4} \left(\frac{8}{5} \right)^2 = \frac{16}{5} = 3.2 \). Checking the end points, the area would be 0 and .75, so the maximum is 3.2. C

20. Notice that, in general, the \(b_{i,j} \) element of \(B^T B \) is the dot product of the \(i \)th column of \(B \) and the \(j \)th column of \(B \). Since \(A^T A = I \), it follows that the magnitude of each column is 1 and that the columns are all orthogonal. Therefore I and II are both true. A counterexample for III is the matrix \(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \) whose determinant is \(-1\). A counterexample for IV is \(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \). B

21. \(\begin{vmatrix} 1 & 0 & 5 \\ 0 & 4 & 1 \\ -2 & 3 & 2 \end{vmatrix} = 1 \cdot 5 - 0 \cdot 5 \cdot 8 = 45 \). C

22. \(f'(x) = (2 - \sqrt{3})e^{(2 - \sqrt{3}x)} \). \(f'(0) = 2 - \sqrt{3} \). Two points of the tangent line are the origin and \((1,2 - \sqrt{3}) \). If we rotate these two points \(30^\circ \), they will determine the rotated line. The rotation matrix is \(\begin{bmatrix} \cos(30^\circ) & -\sin(30^\circ) \\ \sin(30^\circ) & \cos(30^\circ) \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \). The origin will clearly be mapped to itself. The slope of the rotated line is 1. B

23. From the last equation, \(5x - 2 = y + z \) so \(x + y + z = 6x - 2 \). Using Cramer’s Rule, \[x = \begin{vmatrix} -1 & 3 & 1 \\ 13 & 2 & 3 \\ 2 & -1 & -1 \end{vmatrix} = -1,1,3,-19,1,-17 = 39 \] \(x + y + z = 4 \). C

24. The speed is given by \(\|r'(0)\| \). \(r'(t) = (6t + 2)i + (\cos(t) - t \sin(t))j + e^k \). \(r'(0) = 2i + j + k \) and \(\|r'(0)\| = \sqrt{6} \). D
25. Since \(\det A = \frac{1}{6} \), \(\lim_{n \to \infty} \sum_{i=1}^{n} \det \left(A^i \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\det A \right)^i = \sum_{i=1}^{\infty} \left(\frac{1}{6} \right)^i = \frac{1}{1 - \frac{1}{6}} = \frac{1}{5} \). \(\text{B} \)

26. \(M \) is row equivalent to the identity matrix, hence the rank of \(A \) is 4. \(\text{E} \)

27. It is easy to see that \(A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \). Using a Maclaurin expansion,

\[
\cos(A) = I - \frac{A^2}{2!} + \frac{A^4}{4!} - \frac{A^6}{6!} + \text{L} = \begin{bmatrix} 1 - \frac{1}{2!} + \frac{1}{4!} - \text{L} & 0 - \frac{2}{2!} + \frac{4}{4!} - \text{L} \\ 0 & 1 - \frac{1}{2!} + \frac{1}{4!} - \text{L} \end{bmatrix} = \begin{bmatrix} \cos(1) & -\sin(1) \\ 0 & \cos(1) \end{bmatrix} \text{. A}
\]

28. \[
\begin{vmatrix} 2 - 3a & 3a + 1 \\ a - 2 & 1 - a \end{vmatrix} = (2 - 3a)(1 - a) - (3a + 1)(a - 2) = 3a^2 - 5a + 2 - (3a^2 - 5a - 2) = 4 \text{. B}
\]

29. \((-1, 3) \oplus (5, 0) = \| (4, 3) \| - [-5 + 0] = 5 + 5 = 10 \text{. D} \)

30. \[
\frac{2 \cdot 1 - 1 \cdot 2 + 2 \cdot 6 + 3}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{15}{3} = 5 \text{. C}
\]