1) \[2007 = 3^2 \cdot 17 \cdot 19, \quad 1596 = 2^2 \cdot 3 \cdot 7 \cdot 19.\] The greatest common divisor (gcd) is \[\text{gcd} = 3\cdot19 = 57\] C

2) There are only three triplets \((A, B, C)\) that work: \((1, 9, 0), (5, 9, 2),\) and \((6, 9, 3).\) A

3) 9 is always divisible by \(999\ldots9999\) which is always one less than \(10^n\) which is always one less than \(10^n\) B

4) D

5) I, II, and IV are NOT prime. D

6) \[10^3 < 32^2 < 33^2 < 34^2 < 35^2 < 36^2 < 11^3.\] 32 + 33 + 34 + 35 + 36 = 170 B

7) \[2007 \equiv 7 \pmod{100}, \quad 2007 \equiv 7 \pmod{100} \equiv 7^3 \pmod{100} \equiv 43 \pmod{100} C\]

8) For \((n-1)!\) to be divisible by \(n,\) it is equivalent to \(n!\) divisible by \(n^2.\) This means that \(n\) cannot be prime. The only composite number that this doesn’t hold true for is \(n = 4.\) There are 10 prime integers between 1 and 30 inclusive, thus there are 11 for which it is not valid. C

9) The only possible positive integers that has \(d(n) = 3\) are the squares of prime numbers. The ones less than 1000 would be: \(2^2, 3^2, 5^2, 7^2, 11^2, 13^2, 17^2, 19^2, 23^2, 29^2, 31^2\) A

10) In order for \(n!\) to not be congruent to \(0 \pmod{200},\) then it cannot contain all of the factors of 200. \(10! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7\) which is congruent to \(0 \pmod{200}\) and \(9! = 2^7 \cdot 3^4 \cdot 5 \cdot 7\) which is not congruent. Thus the largest value is \(9\) E

11) \(1! \equiv 1 \pmod{10}, \quad 2! \equiv 4 \pmod{10}, \quad 3! \equiv 7 \pmod{10}, \quad 4! \equiv 6 \pmod{10}, \quad 5! \equiv 5 \pmod{10}, \quad 6! \equiv 6 \pmod{10}, \quad 7! \equiv 7 \pmod{10} \equiv 3 \pmod{10}, \quad 8! \equiv 8^4 \pmod{10} \equiv 6 \pmod{10}, \quad 9! \equiv 9^4 \pmod{10} \equiv 3 \pmod{10}, \quad 10! \equiv 1 \pmod{10} \pmod{10} \equiv 3 \pmod{10}\) C

12) The number of zeros in \(2007!\) is found by dividing 2007 by powers of 5: \[\left\lfloor \frac{2007}{5} \right\rfloor = 401, \quad \left\lfloor \frac{2007}{25} \right\rfloor = 80, \quad \left\lfloor \frac{2007}{125} \right\rfloor = 16, \quad \left\lfloor \frac{2007}{625} \right\rfloor = 3.\] 401 + 80 + 16 + 3 = 500.

When raising a number to a power, we multiply the power by the number of zeros to get the total number of zeros: \(500 \cdot 2 = 1000\) D

13) A theorem states that if we’re given an order \(q\) of an element and the group of integers under multiplication \((\mod p)\) where \(p\) is prime, then \(q \mid (p-1).\) Since \(3 \nmid 10,\) then there cannot be any elements of order 3. A

14) Any number with more than 3 digits will reduce the number of digits. Any number with 1 digit will increase the number of digits. Any number with 2 digits will give a number of 2 or 3 digits. When a cycle (or limit) occurs, all of the numbers must have the following property: must be 2 or 3 digits long, sum of hundreds and tens digits must be equal to units digit, and the units digit must be either 2 or 3. (This is because all numbers will lead to numbers of this form, and these numbers are closed.) We only have to consider the following numbers now: 22, 33, 112, 202, 123, 213, and 303. Noting that \(33 \rightarrow 22 \rightarrow 202 \rightarrow 303 \rightarrow 123, 213 \rightarrow 123, 112 \rightarrow 123,\) and \(123 \rightarrow 123\) proves that every number has a limit of 123. D

15) The Fibonacci numbers less than 2007 are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 577, 610, 987, 1597. The ones that satisfy \(F_n^2 + 1\) being divisible by ten must have a 3 or a 7 in the one's digit: 3, 13, 233, 377, 987, 1597. D

16) We solve this similar to a base-6 problem. \(2007 \pmod{26} = 5, \quad (2007 - 5)/26 = 77\)

\[77 \pmod{26} = 25, \quad (77 - 25)/26 = 2.\] \(2 \Rightarrow b, \quad 25 \Rightarrow y, \quad 5 \Rightarrow e\) C

17) The largest odd square less than 2007 is \(43^2 = 1849.\) 2(22)−1 = 43
1^2 + 3^2 + 5^2 + ... = \sum_{n=1}^{\infty} (2n-1)^2 = \sum_{n=1}^{\infty} 4n^2 - 4n + 1 = \frac{4(22)(23)(45)}{6} - \frac{4(22)(23)}{2} + 22(1) = 14190 \quad \text{A}

18) 723_8 = 7(64) + 2(8) + 3 = 467_{10}, 124_5 = 25 + 2(5) + 4 = 39_{10}, 723_8 + 124_5 = 506_{10}, 506_{10} = 622_9 \quad \text{B}

19) Since 102! = 102 \cdot 101 \cdot 100!, the greatest common divisor is 100! \quad \text{E}

20) Simplifying the expression yields \(m! = \frac{20n!}{n!-20} \). For \(n \) larger than 6, the ratio \(\frac{20n!}{n!-20} \) will not be an integer and \(n \) cannot be smaller than 4. For \(n = 4 \) we have \(m! = 120 \Rightarrow m = 5 \). For \(n = 5 \) we have \(m! = 120 \Rightarrow m = 4 \). Since we can switch \(m \) and \(n \) we have two solutions. \quad \text{C}

21) In order to have an exact number of cents, our cost must be a multiple of $0.25. Let's denote this as 25n where \(n \) is the number of quarters we need. In order to have an exact number of dollars, when we multiply our cost without tax to 1.04, we should get an integer: 1.04(25n) = 26n, which must be divisible by 100; or 13n must be divisible by 50. This yields \(n = 50 \), so our pre-tax cost is 25(50) = 1250 cents = $12.50. \quad \text{A}

22) I is TRUE since all primes greater than 3 are odd and \(a \equiv -1 \pmod{p} \) would correspond to an even integer. II is TRUE from \(p \) being odd and is trivially true for \(p = 2 \). III is TRUE by Wilson's Theorem. IV is TRUE from Fermat's Little Theorem. ALL are true. \quad \text{A}

23) 7056 = 2^4 \cdot 3^2 \cdot 7^2. \quad \text{Thus the smallest value for } n \text{ is } 2^2 \cdot 3 \cdot 7 = 84 \quad \text{C}

24) 4155 = 5 \cdot 6! + 4 \cdot 5! + 3 \cdot 4! + 0 \cdot 3! + 1 \cdot 2! + 1 \cdot 1! \quad 543011 \quad \text{D}

25) The pattern is the following: 15, 28, 39, 48, 55, 60, 63, 64, 72, 72, 75, 76, 78, 78, 78 \quad \text{B}

26) When first eliminating all the integers with a 1, there will be \(9^3 = 729 \) numbers remaining. If he was to eliminate all integers with a 2 from the remaining, there would be \(8^3 = 512 \) numbers remaining. However, he keeps all numbers with BOTH a 2 and a 3. The possibilities are: X23, X32, 2X3, 3X2, 23X, and 32X, where X is any digit from 0-9, excluding 1. This means there are 54 possibilities, but we have double counted the following numbers: 223, 232, 322, 332, 323, and 233. Subtracting these gives 48 numbers with BOTH a 2 and a 3 from the remaining. Adding these back in gives \(512 + 48 = 560 \). This means he crossed out \(1000 - 560 = 440 \) \quad \text{A}

27) Trying the first few: \(a_1 = 1, a_2 = 3, a_3 = 12, a_4 = 60, ... \). The terms are related to the factorial sequence by division of 2 and shifted to the left by 1. Thus \(a_n = \frac{(n+1)!}{2} \) \quad \text{C}

28) 2007 minutes is equivalent to 33 hours and 27 minutes. If we move forward by exactly 24 hours, the time remains the same. By moving 4 hours forward, we reach 0:07. Thus we must move 5 hours and 27 minutes forward from 0:07, which corresponds to 5:34 \quad \text{B}

29) \(28x \equiv 2 \pmod{54} \) is the same thing as saying: find an integer solution to \(28x + 54y = 2 \), a linear Diophantine equation. This is equivalent to \(14x + 27y = 1 \). Using the Euclidian algorithm, an initial solution is \(x_0 = 2 \) and \(y_0 = -1 \). All possible solutions are in the form \(x = 2 + 27t \) and \(y = -1 - 14t \). The integer values of \(x \) less than 100 are 2, 29, 56, and 83. \quad \text{D}

30) 56 = \(2^3 \cdot 7 \); 72 = \(2^3 \cdot 3^2 \); The LCM is \(2^3 \cdot 3^2 \cdot 7 = 504 \) \quad \text{C}