Find the equation of the tangent line to the graph \(y = \sin x + x \) at the point \((0, 0)\).
A line with negative slope passes through $(2,0)$ and is tangent to \(\frac{x^2}{2} + \frac{y^2}{1} = 1 \). The line can be written in the form \(y = mx + b \). Compute \(\frac{b}{m} \).
Evaluate the improper integral:

$$\int_{-7}^{2} \frac{dx}{(x - 1)^{\frac{2}{3}}}$$
Find the maximum value, on the interval $\left[0, \frac{\pi}{6}\right]$, of $y = 24 \sin(3x) + 8 \cos(6x)$.
Right triangle ZLU is inscribed in a circle, with radius 24 and hypotenuse ZL. $\angle Z$ is increasing at a rate of 10° per minute as U moves along the circumference of the circle (while Z and L remain fixed). The area of the triangle is changing at $k\pi$ square units per minute when $\angle Z = 30^\circ$. What is k?
The area bounded by $y = \arctan x$, $x = 0$, and $y = \frac{\pi}{4}$ is L. Compute e^{8L}.

The area bounded by $y = \arctan x$, $x = 0$, and $y = \frac{\pi}{4}$ is L. Compute e^{8L}.

The area bounded by $y = \arctan x$, $x = 0$, and $y = \frac{\pi}{4}$ is L. Compute e^{8L}.

The area bounded by $y = \arctan x$, $x = 0$, and $y = \frac{\pi}{4}$ is L. Compute e^{8L}.
A particle moves along the x-axis so that $v(t) = t^2 - 3t$ for $0 \leq t \leq 4$. If its position at time 0 is 4, what is the greatest distance between the particle and the origin?
If a banquet hall sells tickets at a price of L each, then $200 - 4L$ tickets will be sold. Each event costs the banquet hall $200, plus an additional $10 per person. How much should they charge, in dollars per ticket, to maximize their profit?
What is the total area between the curves $y = -6x$ and $y = 6x^2 - 18x$ for $1 \leq x \leq 3$?
The region bounded by the x-axis, $y = x - 2$, and $y = \sqrt{x}$ is revolved about the x-axis. The volume is $\frac{L\pi}{U}$, where L and U are relatively prime positive integers. What is $L + U$?
If \(x = t^2 \) and \(y = \ln(t^2 + 1) \), then at \(t = 1 \), \(\frac{d^2 y}{dx^2} = ? \).
The region bounded by $y = -x^2 + x$ and the x-axis is L. Region L is the base of a solid, and cross sections of this solid perpendicular to the x-axis are isosceles right triangles with hypotenuses on L. What is the volume of this solid?
Let f and h be functions satisfying:

\[
(h(x))^3 = f^{-1}(6057x - 6057)
\]

Compute:

\[
(h(x))^2 h'(x) f' \left((h(x))^3 \right)
\]