1. C
2. C
3. E
4. A
5. D
6. C
7. C
8. B
9. A
10. A
11. B
12. C
13. E
14. B
15. B
16. D
17. E
18. C
19. C
20. C
21. E
22. B
23. B
24. E
25. C
26. A
27. B
28. A
29. C
30. D
1. Using the fact that if \(a \mid b \) and \(a \mid c \) then \(a \mid b + kc \), can check each of the answer choices to see which one is divisible by 5. Assuming that \(5 \mid 3x + y \), we know that \(5 \mid 3(x + 4y) - 3x + y \rightarrow 5 \mid 11y \) which is a contradiction. A similar process shows that \(5 \nmid 7x + 6y, 2x + 5y \). We know that \(5 \mid 6x + 9y \) since \(5 \mid 6(x + 4y) - 5(3y) \) \(\boxed{C}\)

2. \(17^{-1} \) is equivalent to \(x \) if \(x \) satisfies the equivalence \(17x \equiv 1 \mod 47 \). Then by definition of \(\mod \), there exists \(n \) such that \(47n_1 = 17x - 1 \). Taking \(\mod 17 \) of each side gives the equivalence \(13n_1 \equiv -1 \mod 17 \). Then \(17n_2 = 13n_1 + 1 \) and taking \(\mod 13 \) gives \(4n_2 \equiv 1 \mod 13 \). Then \(13n_3 = 4n_2 - 1 \) and taking \(\mod 4 \) gives \(n_3 \equiv -1 \mod 4 \). Thus \(n_3 \equiv 3 \mod 4 \) which gives \(n_2 \equiv 10 \mod 13 \) which gives \(n_1 \equiv 13 \mod 17 \) and finally \(x \equiv 36 \mod 47 \) \(\boxed{C}\)

3. This is famously known as a "taxicab number", the smallest of which is 1729 \(\boxed{E}\)

4. The expansion of \(AB_{10} \) is \(10a + b \) and similarly the expansion of \(BA_7 \) is \(7b + a \). Then \(10a + b = 7b + a \rightarrow 3a = 2b \). Then since \(a \) and \(b \) are digits in base 7, the only possibilities for \((a, b) \) are \((2, 3) \) and \((4, 6) \). Then the sum of \(AB_{10} \) is \(23 + 46 = 69 \) \(\boxed{A}\)

5. If \(x \) is the number of Pokemon Ben has caught so far then

\[
\begin{align*}
x & \equiv 5 \mod 16 \\
x & \equiv 4 \mod 9 \\
x & \equiv 3 \mod 5
\end{align*}
\]

Combining the first two equivalences gives the equation \(16a + 5 = 9b + 4 \). Noticing that \(a = 5, b = 9 \) is a solution (or using Euclidean algorithm), this gives \(x \equiv 85 \mod 144 \). By the same process we combine \(\mod 144 \) and \(\mod 5 \), which gives \(x \equiv 373 \mod 720 \). Since there are only 802 Pokemon available, Ben must have caught 373 Pokemon \(\boxed{D}\)

6. After \(n \) dice rolls, the sum has equal probabilities of being \(0, 1, \ldots, 5 \mod 6 \). After that roll there is exactly one roll that will make the sum 0 mod 6. Thus the probability is \(\frac{1}{6} \) \(\boxed{C}\)

7. \(\phi(60) = 16 \) (Euler’s totient function) \(\boxed{C}\)

8. The Chicken McNugget Theorem states that the largest integer that cannot be represented by \(ax + by \) for non-negative integers \(x, y \) and relatively prime \(a, b \) is \(ab - a - b \). So \(c = 6 \cdot 7 - 6 - 7 = 29 \). The sum of digits in \(c \) is \(2 + 9 = 11 \) \(\boxed{B}\)
9. \(x^2 + 2x + 32 \equiv x^2 + 2x - 3 \equiv (x + 3)(x - 1) \equiv 0 \mod 35 \) This implies that we must have

\[
\begin{align*}
(x + 3)(x - 1) &\equiv 0 \mod 5 \\
(x + 3)(x - 1) &\equiv 0 \mod 7
\end{align*}
\]

Clearly the first equivalence gives the solutions \(x \equiv 1, 2 \mod 5 \) and the second gives the solutions \(x \equiv 1, 4 \mod 7 \). Combining the possibilities gives \(x \equiv 1, 11, 22, 32 \mod 35 \). Then the sum is \(1 + 11 + 22 + 32 \equiv 31 \mod 35 \) [A]

10. By principle of inclusion-exclusion, the number of integers is \(\left\lfloor \frac{1500}{7} \right\rfloor + \left\lfloor \frac{1500}{11} \right\rfloor - 2\left\lfloor \frac{1500}{77} \right\rfloor = 312 \) [A]

11. An integer that has 9 factors must either be in the form \(p^2p_2^2 \) or \(p^8 \). The three smallest integers in this form are \(2^23^2 \), \(2^25^2 \), and \(2^27^2 \) [B]

12. The number of zeros at the end of 2018! are limited by the power of 5 that divides into 2018!. Counting powers of 5 yields \(\left\lfloor \frac{2018}{5} \right\rfloor + \left\lfloor \frac{2018}{25} \right\rfloor + \left\lfloor \frac{2018}{125} \right\rfloor + \left\lfloor \frac{2018}{625} \right\rfloor = 502 \) [C]

13. Since \(\gcd(a, b) \cdot \text{lcm}(a, b) = ab \), then our product is \(84 \cdot 126 = 10584 \) [E]

14. Counting the pairs \((m, n)\) gives \((2, 19), (7, 17), \ldots, (47, 1)\) which is 10 pairs in total [B]

15. The prime factorization of 3288 is \(3288 = 2^3 \cdot 3 \cdot 137 \). Then the sum of the factors of 3288 is \((2^0 + 2^1 + 2^2 + 2^3)(3^0 + 3^1)(137^0 + 137^1) = (15)(4)(138) = 8280 \) [B]

16. Notice that the smallest possible product \(abc \) results from \(a = 3, b = 4, \) and \(c = 5 \), which gives \(abc = 60 \). We verify that the prime factors of 60 will always divide \(abc \). For 3, notice that the quadratic residues modulo 3 are 0 and 1. Using casework we see that we can only have

\[
\begin{align*}
a^2 &\equiv 1 \pmod{3}, b^2 \equiv 0 \pmod{3}, c^2 \equiv 1 \pmod{3} \\
a^2 &\equiv 0 \pmod{3}, b^2 \equiv 1 \pmod{3}, c^2 \equiv 1 \pmod{3} \\
a^2 &\equiv 0 \pmod{3}, b^2 \equiv 0 \pmod{3}, c^2 \equiv 0 \pmod{3}
\end{align*}
\]

In each case we can conclude that \(3|abc \). Using similar logic for 4 and 5, we can show that \(4|abc \) and \(5|abc \). Thus the largest such \(k \) such that \(k|abc \) is \(k = 60 \) [D]

17. Examining the equation modulo 8 we see that \(n^2 \equiv 3 \pmod{8} \). Since 3 is not a quadratic residue of 8, there are no solutions to the equation [E]
18. Since norm is multiplicative (this can be easily verified), \(N((5 + 3i)(6 - 2i)(2 + i)) = N(5 + 3i)N(6 - 2i)N(2 + i) = (34)(40)(5) = 6800 \]

19. Since there exists \(\gamma \) such that \(\gamma(1 - 5i) = \alpha \), we know that \(N(\gamma)N(1 - 5i) = N(\alpha) \to \frac{N(\alpha)}{N(1 - 5\alpha)} = N(\gamma) \in \mathbb{Z} \), which implies that \(26|N(\alpha) \]

20. Notice that \(1, -1, i, -i \) are units. We eliminate answers by factoring.

\[
\begin{align*}
2 &= (1 + i)(1 - i) \\
41 &= (5 - 4i)(5 + 4i) \\
1 + 5i &= (1 + i)(3 + 2i)
\end{align*}
\]

We must verify that \(4 + i \) is a prime. Assume for the sake of contradiction that \(4 + i = \alpha \beta \) for some non-units \(\alpha, \beta \). Then taking the norm of both sides we have \(17 = N(\alpha)N(\beta) \). Then either \(N(\alpha) = 1 \) or \(N(\beta) = 1 \). This is a contradiction since neither \(\alpha \) or \(\beta \) are units

21. (I) is true since \(N((a + bi)(c + di)) = N((ac - bd) + (ad + bc)i) = (ac - bd)^2 + (ad + bc)^2 = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 = (a^2 + b^2)(c^2 + d^2) = N(a + bi)N(c + di) \).

(II) is false since the units of \(\mathbb{Z}[i] \) are \(1, -1, i, -i \).

(III) is false, however the converse is clearly true. As a counterexample, \(N(1 + 2i)|N(1 - 2i) \) but \(1 + 2i \nmid 1 - 2i \).

(IV) is true. Suppose there exists non-units \(\alpha = a + bi \) and \(\beta = c + di \) such that \(p = \alpha \beta \). Then we have \(N(p) = p^2 = N(\alpha)N(\beta) \). Since neither \(\alpha \) nor \(\beta \) are units, we must have \(a^2 + b^2 = N(\alpha) = p^2 = 4k + 3 \). But this is clearly impossible since a sum of squares cannot be \(3 \mod 4 \)

22. Since \(n^3 + 7n^2 - 13n + 19 = (n - 4)n^2 + (n - 4)11n + (n - 4)31 + 143 \) (synthetic division), then \(n - 4|n^3 + 7n^2 - 13n + 19 \to n - 4|413 \). Then \(n = 4 \to 1, 11, 13, 143 \to n = 3, 5, 15, 17, 147 \). The sum of all possible values of \(n \) is \(3 + 5 + 15 + 17 + 147 = 187 \]

23. Using Euler’s Totient Theorem, we know that \(3^{72} \equiv 1 \mod 91 \). Then \(3^{391} \equiv (3^{72})^{5}3^{31} \equiv 3^{31} \mod 91 \). Then notice that,

\[
\begin{align*}
3 &\equiv 3 \mod 91 \\
3^2 &\equiv 9 \mod 91 \\
3^4 &\equiv -10 \mod 91 \\
3^8 &\equiv 9 \mod 91 \\
3^{16} &\equiv -10 \mod 91 \\
3^{32} &\equiv 9 \mod 91
\end{align*}
\]

\(3^{32} \equiv 9 \mod 91 \) implies that \(3^{31} \equiv 3 \mod 91 \)
24. From Vieta’s formula we know that \(p_1 + p_2 + p_3 = 40 \). If all the primes were odd then \(p_1 + p_2 + p_3 \) would be odd. Thus one of the primes must be 2. WLOG, let \(p_1 = 2 \). Then \(p_2 + p_3 = 38 \). Counting all the possible unordered triplets of \((p_1, p_2, p_3) \) gives \((2, 7, 31)\) and \((2, 19, 19)\). Then the sum of all possible values for \(|c_2|\) is \(2 \cdot 7 \cdot 31 + 2 \cdot 19 \cdot 19 = 1156 \). [E]

25. \[\lim_{n \to \infty} \left(\frac{a_{n+1}}{a_n} = \frac{a_n}{a_{n-1}} \right) \to \]

\[\frac{3a_n - a_{n-1}}{a_n} = \frac{a_n}{a_{n-1}} \]

\[a_{n-1}(3a_n - a_{n-1}) = a_n^2 \]

\[a_n^2 - 3a_n a_{n-1} + a_{n-1}^2 = 0 \]

\[\left(\frac{a_n}{a_{n-1}} \right)^2 - 3 \frac{a_n}{a_{n-1}} + 1 = 0 \]

\[a_n = \frac{3 \pm \sqrt{5}}{2} \]

By inspection the ratio is clearly greater than 1 so the ratio must be \(\frac{3 + \sqrt{5}}{2} \). [C]

26. We can examine the equation by various mods to determine possible values for \(x \). Taking mod 2 we see that \(1^5 + 0^5 + 0^5 + x^5 \equiv 0^5 \mod 2 \to x \equiv 1 \mod 2 \). Taking mod 3 we see that \(0^5 + 0^5 + 2^5 + x^5 \equiv 0^5 \mod 3 \to x \equiv 1 \mod 3 \). Taking mod 5 we see that \(2^5 + (-1)^5 + 0^5 + x^5 \equiv (-1)^2 \mod 5 \to x \equiv 3 \mod 5 \). Taking mod 7 we see that \((-1)^5 + 0^5 + (-2)^5 + x^5 \equiv 4^5 \mod 7 \to x \equiv 0 \mod 7 \). These conditions are enough to narrow the answer down to \(x \equiv 133 \mod 210 \). We can computationally verify that 133 satisfies this equation [A]

27. Using Sophie-Germaine factorization,

\[4^5 + 5^4 = 5^4 + 4 \cdot 4^4 \]

\[= (5^2 + 2 \cdot 5 \cdot 4 + 2 \cdot 4^2)(5^2 - 2 \cdot 5 \cdot 4 + 2 \cdot 4^2) \]

\[= (25 + 40 + 32)(25 - 40 + 32) \]

\[= (97)(17) \]

Thus there are 2 prime factors of \(5^4 + 4^5 \). [B]
28. First note that $3 \nmid x$. Next we add 1 to both sides and factor, which gives

$$(x + 1)(x^2 - x + 1) = 3^y$$

Let $x + 1 = 3^a$ and $x^2 - x + 1 = 3^b$ where $a + b = y$ and $b > a$. Then clearly $3^a \mid gcd(x-1, x^2+x+1)$ which is equivalent to $3^a \mid gcd(x-1, 3x)$ since $(x+1)^2 - (x^2-x+1) = 3x$. Then clearly we must also have $3^a \mid 3x$, but since $3 \nmid x$, we can only have $a = 0, 1$. These give the only solutions $(0, 0), (2, 2)$. Thus the sum is $0 + 0 + 2 + 2 = 4$ [A]

29. Since $ab = k^2$ we can say $a = n_1^2n_2$ and $b = n_2n_3^2$. But $a-b = n_1^2n_2 - n_2n_3^2 = n_2(n_1^2 - n_3^2) = p$. Thus n_2 must be 1. Then $n_1^2 = n_3^2 = (n_1 - n_3)(n_1 + n_3) = p$. So $n_1 - n_3 = 1$ and $n_1 + n_3 = p$. Then our possible pairs (a, b) are $(4, 1), (9, 4), (16, 9), (36, 25), (49, 36)$. The sum of all such a is $4 + 9 + 16 + 36 + 49 = 114$ [C]

30. Expanding gives

$$n^2 - 4n + 4 - m^2 + 4m - 4 = 2mn$$
$$n^2 - 4n - 2mn - m^2 + 4m = 0$$
$$n^2 + n(-4 - 2m) - m^2 + 4m = 0$$

Considering this as a quadratic equation in n gives

$$n = \frac{4 + 2m \pm \sqrt{(-4 - 2m)^2 - 4(-m^2 + 4m)}}{2}$$
$$= \frac{4 + 2m \pm \sqrt{4m^2 + 16m + 16 + 4m^2 - 16m}}{2}$$
$$= \frac{4 + 2m \pm 2\sqrt{2m^2 + 4}}{2}$$

Now since n must be an integer, this means that $\sqrt{2m^2 + 4}$ must be an integer. Then,

$$\sqrt{2m^2 + 4} = k \rightarrow k^2 - 2m^2 = 4$$

Notice that k must be even so using the substitution $k = 2k_1$ gives $2k_1^2 - m^2 = 2$. Then by the same logic m must also be even so using the substitution $m = 2m_1$ gives $k_1^2 - 2m_1^2 = 1$. This is a Pell’s equation with base solution $(3, 2)$, which gives the solution $(m, n) = (4, 12)$. The next smallest solution (k_1, m_1) is given by

$$3^2 - 2 \cdot 2^2 = 1$$
$$(3 - 2\sqrt{2})(3 + 2\sqrt{2}) = 1$$
$$(3 - 2\sqrt{2})^2(3 + 2\sqrt{2})^2 = 1^2$$
$$(17 - 12\sqrt{2})(17 + 12\sqrt{2}) = 1$$

Thus $(k_1, m_1) = (17, 12) \rightarrow (m, n) = (24, 60)$. Then, $m + n = 24 + 60 = 84$ [D]