For each of the following questions, answer choice E. NOTA means none of the above answers is correct. In general, take brackets [] to mean a matrix, and vertical lines || to mean a determinant.

1. Find the shortest distance between the two lines
$$\frac{x-3}{2} = \frac{y+5}{3} = \frac{z-1}{6}$$
 and $\frac{x-4}{2} = \frac{y+1}{3} = \frac{z-6}{6}$
A. 1 B. $\frac{\sqrt{122}}{7}$ C. $\frac{6\sqrt{5}}{5}$ D. $\sqrt{42}$ E. NOTA

Let *A* be a square matrix. If |A| = 3, and |4A| = 192, Find $|(2A)^{-1}|$. 2.

A.
$$\frac{1}{6}$$
 B. $\frac{1}{12}$ C. $\frac{1}{24}$ D. $\frac{8}{3}$ E. NOTA

Find the rank of the following matrix: 3.

$$\begin{bmatrix} 4 & -3 & 6 \\ 1 & 2 & 5 \\ 6 & 1 & 16 \end{bmatrix}$$

A. 0 B. 1 C. 2 D. 3 E. NOTA

4. Which of the following is not in row echelon form?
A.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
 B. $\begin{bmatrix} 1 & 0 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$ C. $\begin{bmatrix} 4 & 2 \\ 0 & 3 \\ 0 & 0 \end{bmatrix}$ D. $\begin{bmatrix} 0 & 2 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ E. NOTA

Find the third row, second column of the inverse of the following matrix: 5.

$$\begin{bmatrix} 1 & 2 & -3 & 1 \\ 2 & 3 & -6 & 2 \\ 3 & -5 & -5 & 5 \\ -2 & 5 & 5 & -5 \end{bmatrix}$$

A. $\frac{3}{2}$ B. 0 C. $-\frac{3}{10}$ D. $-\frac{3}{2}$ E. NOTA

For questions 6-8, consider the following matrix:

$$\begin{bmatrix} 4 & -3 & 5 \\ 2 & 6 & 0 \\ 3 & 4 & 2 \end{bmatrix}$$

6.	Find the deterr	ninant of the matri	х.		
	A. 10	B. 15	C94	D10	E. NOTA

7. Find the sum of the entries of the first row in the inverse of the matrix.

A. 0 B.
$$\frac{9}{10}$$
 C. $\frac{3}{5}$ D. $\frac{4}{5}$ E. NOTA

8. If the eigenvalues of the matrix are λ_1, λ_2 , and λ_3 , find $\lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3$. A. -35 B. -12 C. 12 D. 35 E. NOTA

9. Find the volume of the parallelepiped with edges defined by the vectors $\langle -1,2,5 \rangle$, $\langle 3, -6,2 \rangle$, $\langle 24,17,0 \rangle$. A. $\frac{1105}{6}$ B. 512 C. 432 D. 568 E. NOTA

10. Let the measure of the acute angle formed from the intersection of the lines $\frac{x-5}{4} = \frac{y-3}{4} = \frac{z-4}{7}$ and $\frac{x-14}{9} = \frac{y-9}{6} = \frac{z-6}{2}$ be θ . Find $\cos \theta$. A. $\frac{46}{99}$ B. $\frac{74}{99}$ C. $\frac{11}{2}$ D. No intersection E. NOTA

11. The entries of a 2 × 2 matrix are all positive integers. given that the sum of its entries is 16, find the maximum value of the determinant.
A. 0
B. 40
C. 48
D. 64
E. NOTA

12. How many of the following are true?

- I. A nilpotent matrix must have a determinant of 0.
- II. An idempotent matrix must have a determinant of 1.
- III. A 2 × 2 matrix M can only be nilpotent if M^2 is the zero matrix.
- IV. The trace of an idempotent matrix is always equal to its rank.
- A. 1 B. 2 C. 3 D. 4 E. NOTA

13. Given that 4x + 4y + 7z = 18, find the minimum value of $x^2 + y^2 + z^2$.

A. $\frac{32}{9}$ B. 4 C. 5 D. 6 E. NOTA

14. Evaluate

$$\begin{bmatrix} \sqrt{6} + \sqrt{2} & -\sqrt{6} + \sqrt{2} \\ \sqrt{6} - \sqrt{2} & \sqrt{6} + \sqrt{2} \end{bmatrix}^{100} \cdot \begin{bmatrix} -\frac{1}{4} & \frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & -\frac{1}{4} \end{bmatrix}^{200} \cdot \\ \frac{-\sqrt{3}}{4} & -\frac{1}{4} \end{bmatrix}^{100} \cdot \\ A. \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad B. \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} C. \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} D. \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = E. \text{ NOTA}$$

15. A quadrilateral with vertices at (0,0), (1,2), (6,4), and (3,-2) is transformed using the matrix [3 5] . Find the area of the rotated quadrilateral.
 A. 4
 B. 16
 C. 32
 D. 64
 E. NOTA

16. Find the shortest distance between the point (w, x, y, z) = (1,4,6,1) and the space 2w + 4x - 5y + 6z = 13 in hyperspace. A. 3 B. $\frac{19}{9}$ C. 2 D. $\frac{7}{9}$ E. NOTA

17. Find the resulting vector when 4i + 8j is rotated $\frac{\pi}{2}$ clockwise. A. 4i - 8j B. -8i + 4j C. 8i - 4j D. -4i + 8j E. NOTA

For questions 18-20, consider the following information.

The Hill Cipher was used frequently to send confidential information in the military. It involves an encryption matrix that, when multiplied with letters taken two at a time, can encrypt a message. The letters A to Z are represented by the remainder when an entry in the resulting matrix is divided by 26, from 0 to 25, respectively. For example, using the encryption matrix $\begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}$, if we wanted to encrypt the word "QI", we would get $\begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix} \begin{bmatrix} Q \\ I \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix} \begin{bmatrix} 16 \\ 8 \end{bmatrix} = \begin{bmatrix} 88 \\ 184 \end{bmatrix} = \begin{bmatrix} 10 \\ 2 \end{bmatrix} = KC$. If there are an odd number of letters in the message being encoded, fill the last slot with a Z, or 25. Here is a conversion table for your convenience.

Α	В	С	D	Е	F	G	Η	Ι	J	Κ	L	Μ
0	1	2	3	4	5	6	7	8	9	10	11	12

Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Encrypt the message "ILOVEYOU" using the hill cipher with encryption matrix $\begin{bmatrix} 1 & 2 \\ a & 2 \end{bmatrix}$. 18. What is the fourth letter of the encryption? D. U E. NOTA A. D **B**. E C. I

- ^{19.} If the encryption matrix of a cipher is $\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$, find the determinant of the decryption matrix. A. $-\frac{1}{6}$ B. 1 C. -6 D. DNE E. NOTA
- 20. Kejin wanted to send Alan a secret message, so he encrypted it using a hill cipher with the encryption matrix $\begin{bmatrix} 2 & 5\\ 1 & 3 \end{bmatrix}$. He ended up sending the letters WFMTEJ. What is the topic of this message?

A. Love C. Sports D. Food E. NOTA B. Math

21.	For questions 21-2 Find the trace of <i>M</i> A. 3	6, consider matrix 7. B. 4	<i>M</i> = C.	$= \begin{bmatrix} 2 & 4 & 2 \\ -1 & 1 & - \\ 2 & 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.	0	E.	NOTA
22.	Find the sum of the A. -12	e coefficients of th B. 0	e cha C.	aracteristic po 8	lynor D.	nial of <i>M</i> . 12	E.	NOTA
23.	Calculate the product $A6$	act of the eigenval B. 0	ues c C.	of the matrix. 4	D.	16	E.	NOTA
24.	If there exists a ma does not exist, sim A6	ttrix <i>K</i> with $ K >$ ply bubble D. B. 0	0 su C.	ch that <i>M</i> · <i>K</i> 4	= <i>K</i> , D.	, find the dete K Does not exist	rmir E.	ant of <i>K</i> . If <i>K</i> NOTA
25.	Given the equation A. 0	$M \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12 \\ 5 \\ 16 \end{bmatrix},$ B. 1	find C.	x + y + z.	D.	3	E.	NOTA
26.	Find the determina A. -6	nt of the cofactor $B\frac{1}{6}$	matri C.	ix of <i>M</i> . 0	D.	36	E.	NOTA

27. Construct all 2 × 2 matrices where all elements are from the set {0, 1}. Pick a random matrix from them, with equal probability. Call this matrix *A*. What is the probability that $A^2 = A$?

A.
$$\frac{1}{16}$$
 B. $\frac{1}{4}$ C. $\frac{1}{2}$ D. $\frac{5}{8}$ E. NOTA

- 28. Jeremy is very lazy and did not do his homework on January 1st, 2022. Assume that homework is given every day, once a day. The probability Jeremy does his homework on a given day, given that he did not do his homework the previous day, is 0.3, while the probability Jeremy does his homework on a given day, given that he did do his homework the previous day, is 0.5. What is the probability, rounded to the nearest thousandth, that Jeremy does his homework on January 1st, 2062?
 - A. 0.333 B. 0.375 C. 0.417 D. 0.444 E. NOTA
- 29. Samuel and Chris start at the same point at time t = 0. Chris moves along the path defined as x(t) = t, y(t) = 2t 1, z(t) = 4t + 2, while Samuel moves along the path defined as x(t) = 3t, y(t) = 4t 1, z(t) = 2. Calculate the distance between the two when they are the same distance away from the origin again at time t > 0.
 A. 0
 B. 2√6
 C. √590
 D. 10√6
 E. NOTA
- 30. Find the determinant of the following:

$$5$$
 3 1 3 4 7 3 0 6 6 2 2 3 7 9 5 A. 7B. 14C. 28D. 42E. NOTA