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1. D 
cos 𝑥 =

4

5
 and cos 3𝑥 = 4 cos3 𝑥 − 3 cos 𝑥 → 4 (

4

5
)

3

− 3 (
4

5
) = −

44

125
 

2. B cot 𝜃 cos 𝜃 =
cos2 𝜃

𝑠𝑖𝑛𝜃
. The only way this is negative is if sin 𝜃 < 0. The only angle that 

satisfies this requirement is 
27𝜋

5
 . 

3. D All terms cancel except for cos 180° which is −1 

4. C 5𝜃 =
𝜋

2
+ 2𝜋𝑘 and 5𝜃 =

3𝜋

2
+ 2𝜋𝑘 which yields 𝜃 =

𝜋

10
+

2𝜋

5
𝑘 and 𝜃 =

3𝜋

10
+

2𝜋

5
𝑘. 

The two smallest solutions are 
𝜋

10
 and 

3𝜋

10
 and their product is 

3𝜋2

100
. 

5. A sin2 𝑥 cos2 𝑥 = (
1

2
−

1

2
cos 2𝑥) (

1

2
+

1

2
cos 2𝑥) =

1

4
−

1

4
cos2 2𝑥 =

1

4
−

1

4
(

1

2
+

1

2
cos 4𝑥) =

1

4
−

1

8
−

1

8
cos 4𝑥 =

1

8
−

1

8
cos 4𝑥. 

6. A Sketching the picture we find that the central angle of the smaller arc is 130° 

therefore making the central angle of the larger arc 230°. Subtract the 2 angles and 

find the arc length: 𝑆 = (
100𝜋

180
) (10) =

50𝜋

9
 .  

7. B Equation simplifies to 
1+2 sin 𝑥+sin2 𝑥+cos2 𝑥

cos 𝑥(1+sin 𝑥)
= 4 →

2+2 sin 𝑥

cos 𝑥(1+sin 𝑥)
= 4 →

2

cos 𝑥
= 4 →

cos 𝑥 =
1

2
. The two angles are 

𝜋

3
 and 

5𝜋

3
. 

8. D Because of cyclic nature of sine, all of the terms will cancel except for the last five 

terms. Therefore, sin (
2017𝜋

6
) + sin (

2018𝜋

6
) + sin (

2019𝜋

6
) + sin (

2020𝜋

6
) +

sin (
2021𝜋

6
) = 2 + √3 

9. B Equation factors to (cos2 𝑥 − 1)(2 cos 𝑥 + 1) = 0 producing solutions of 0,
2𝜋

3
 , 𝜋, 

and 
4𝜋

3
. Their sum is 3𝜋. 

10. A 
We can rewrite the equation as 𝑥 = tan (𝐴𝑟𝑐𝑡𝑎𝑛 1 + 𝐴𝑟𝑐𝑡𝑎𝑛 (

24

7
)). Using tangent 

addition we get 𝑥 =
1+

24

7

1−1∙
24

7

= −
31

17
. Therefore |−31 + 17| = 14 

11. B If you sketch both curves (the other branch of the log graph is simply reflected over 

the y – axis), they will only intersect twice.  

 
12. D sin 141° = sin 39° = sin 3(13°) → 𝑥 = 13°. Since sin 3𝑥 = 3 sin 𝑥 − 4 sin3 𝑥 , we 

have 3 sin 13° − 4 sin3(13°).  

13. C 8!

3! 2!
= 3360 

14. B We need all set of x’s for which both cosine and sine will be positive. Answer choice 

B is the only one that satisfies this requirement.  
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15. C This is an infinite geometric series with 𝑟 = 3 tan2 𝑥. Therefore 3 tan2 𝑥 ≥ 1 →

tan 𝑥 ≥
√3

3
 . So 𝑥 ≥

𝜋

6
 . The other bound here is where tan 𝑥 is undefined which is at 

𝜋

2
. 

16. B Let 𝑚1 =
17

7
 and 𝑚2 = 1 . Therefore the tangent of the angle between them is 

tan(𝑚1 − 𝑚2) = (
(

17

7
−1)

1+
17

7
∙1

) =
5

12
. This means that the sine of the angle is 

5

13
  and the 

cosine of this angle is 
12

13
. Using tangent half angle tan (

𝜃

2
) =

1−
12

13
5

13

=
1

5
. Add this 

tangent back to tan 1 to get the slope of the bisector: tan(𝐴 + 𝐵) =
1+

1

5

1−
1

5
∙1

=
3

2
. 

17. E 𝑗(𝑥) =
𝑒2𝑥(cos2 𝑥−sin2 𝑥)

𝑒2𝑥(cos2 𝑥+sin2 𝑥)
= cos2 𝑥 − sin2 𝑥 = cos 2𝑥. Therefore cos 2𝑥 = 0 which 

produces the zeros 
𝜋

4
 ,

3𝜋

4
 , and 

5𝜋

4
 . Exclude 

7𝜋

4
 due to the given domain restriction.  

18. A Spherical coordinates are in the form of (𝜌 cos 𝜃 sin 𝜙 , 𝜌 sin 𝜃 sin 𝜙 , 𝜌 cos 𝜙).  This 

makes the two points (
15

4
,

5√3

4
,

5

2
) and (2, 0, 0). Therefore 𝑑 =

√(
7

4
)

2

+ (
5√3

4
)

2

+ (
5

2
)

2

= √14 

19. D The determinant simplifies to −(sin 𝑥 + 1)(1 + sin 𝑥 cos 𝑥). Plugging in 𝜋 you get -

1. 

20. C Only III, IV, and V have an eccentricity of 1 therefore these are the parabolas.  

21. D 
(

4500 𝑟𝑜𝑡

min
) (

4𝜋 𝑖𝑛𝑐ℎ

1 𝑟𝑜𝑡
) (

1 𝑓𝑡

12 𝑖𝑛
) (

1min

60 𝑠𝑒𝑐𝑠
) = 25𝜋

𝑓𝑡

𝑠𝑒𝑐
 

22. B 
𝑟 (cos 𝜃 sin

𝜋

6
+ sin 𝜃 cos

𝜋

6
) = 2 →

1

2
𝑥 +

√3

2
𝑦 = 2 → 𝑥 + √3𝑦 = 4 

23. D Answer choice should be 𝑧1𝑧2 = 𝑟2𝑐𝑖𝑠(𝛼 + 𝛽) 

24. C 𝑟2 + 8𝑟2 cos2 𝜃 = 72 → 9𝑥2 + 𝑦2 = 72 →
𝑥2

8
+

𝑦2

72
= 1. Area of the ellipse is 

𝜋𝑎𝑏 = 𝜋(√8 ∙ 24) = 24𝜋 

25. B |𝑢| = √34 , |𝑣| = √10 , and |𝑢 + 𝑣| = 2√17 . Using the Law of Cosines… 

10 = 34 + 68 − 2√34 ∙ 68 cos 𝜃 

−92 = −68√2 cos 𝜃 

cos 𝜃 =
92

68√2
→ sec 𝜃 =

17√2

23
 

 

26. C is false because it is missing the ± 

27. D This simplifies to (cos2 𝑥 + sin2 𝑥)2 + 𝑥2 which is 1 + 𝑥2. Therefore the minimum 

value is 1.  

28. D 𝑟 − 4𝑟 sin 𝜃 = 2 → 𝑟2 = (4𝑦 + 2)2 → 𝑥2 − 15𝑦2 − 16𝑦 − 4 = 0. Therefore, 
(1(−15)+2[(−4)2−(1)(−16)])

(−16)(−4)
=

49

64
. Note that all terms in the fraction are quadratic, so 

even with the arbitrary scaling of the equation, the value of the fraction remains the 

same. 
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29. A Sketch a picture here and label the distance to the shore as x. Working from 

Lighthouse B and using Law of Cosines we get: 

302 = 252 + 502 − 2(25)(50) cos 𝐵 

cos 𝐵 =
89

100
 

This means that sin 𝐶 =
√2079

100
 . But, since sin 𝐵 =

𝑥

25
 , we can equate the two 

expressions and solve for x: 

𝑥

25
=

√2079

100
→ 𝑥 =

3√231

4
 

 

30. A This question will involve some knowledge of limits and where they exist. If you 

direct substitute in 0, you’ll produce a 0 in the denominator so we’d need a 0 in the 

numerator in order to make the limit undefined which allows us to move forward 

with the problem.  

𝑎 + cos 𝑏𝑥 = 0 → 𝑎 + cos 𝑏(0) = 0 → 𝑎 + 1 = 0 → 𝑎 = −1 

 

Now that we know the value of 𝑎, we can rewrite the limit as lim
𝑥→0

−1+cos 𝑏𝑥

𝑥2 = −4 

which is equivalent to lim
𝑥→0

−𝑏 sin 𝑏𝑥

2𝑥
= −4. Using the special trig limit lim

𝑥→0

sin 𝐴𝑥

𝐵
=

𝐴

𝐵
 , 

we can solve: 

 

−
𝑏2

2
= 4 → 𝑏2 = 8 

 

Therefore, 𝑎 + 𝑏2 = −1 + 8 = 7.  

 

 


