

Mental Math Test #401

Name	e: <u> </u>					
ID Number:						
Scho	ol:					
Division (circle one):						
Mu	Alpha	Theta	Sponsor			

1.	Evaluate: $\sum_{i=0}^{10} i$	24.	How many 3-digit numbers have the property
2.	Evaluate: $1 - 2 + 3 - 4 \dots + 99$		that the ten's digit is equal to the sum of the
3.	Evaluate: 7!		hundred's and unit's digit?
4.	Evaluate: $\frac{2}{\frac{1}{40} + \frac{1}{60}}$	25.	How many ways are there for Konwoo to
_			distribute 8 apples among him, Jeffrey, Andy,
5.	Round to the nearest integer: $\sum_{i=0}^{5} \sqrt{2^{i}}$		and Buffy given that he wants at least one?
6.	Find the sum of the reciprocals of the roots of	26.	Help Andy find the number of ways to draw a
	the following equation:		red and then a black card when drawing two
	$f(x) = x^4 - 10x^3 + 35x^2 - 50x + 24$		cards from a shuffled standard 52-card deck.
7.	Evaluate: $4^{\log_2 3} + 27^{\log_3 2}$	27.	Mr. Lu flips four coins. Given that at least
8.	Evaluate: $\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$		one of them flips heads, what is the
0.	2 1 0		probability he flipped all heads?
9.	Buffy has a favorite quadratic polynomial	28.	Mr. Lu rolls three 6-sided dice. He gets \$1 if
	f(x). He tells you that $f(-1) = -5$, $f(0) =$		any of them are a 1, otherwise he loses \$1.
	0 and $f(1) = -5$ What is $f(4)$?		What are his expected profits from one game?
10.	Evaluate: $\sum_{i=1}^{\infty} i \cdot \left(\frac{1}{2}\right)^i$	29.	Mr. Lu is now playing a game where him and
	(2)		I each roll a 6-sided die. Whoever rolls the
11.	For integers x , y and z , find a valid solution to		higher value gets \$1 (the loser loses \$1), and
10	$x^2 + y^2 = 3z^2.$		if there is a tie, both players get \$1. What are
12.	Deez's favorite number is 4 mod 7 and 3 mod		Mr. Lu's expected profits from one game?
	11. Given that his number is a positive integer	30.	Mr. Lu just rolled 2022 dice. Find the
	less than 77, what is his favorite number?		probability that the sum of his rolls is even?
13.	Find the greatest prime factor of $7! + 8! + 9!$	31.	A perfect number is a number equal to the
14.	Find the units digit of $\sum_{i=1}^{5} i^{i}$.		sum of its proper divisors. What is the
15.	Let x , y , z be positive integers. Find the		smallest perfect number?
	number of solutions to $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$.	32.	Evaluate: $\sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$
16.	Find the radius of the circle whose area is		
	equal to its circumference.	33.	Evaluate: $\sqrt{2\sqrt{2\sqrt{2}}}$
17.	Find the side length of the equilateral triangle		A 24 puzzle involves using the operations +,
	whose area is equal to its perimeter.		-, ·, / among four numbers (each number
18.	Find the side length of the regular tetrahedron		used exactly once) to compute 24.
	whose volume is equal to its surface area.		Example: $1, 2, 3, 4 \rightarrow 1 \cdot 2 \cdot 3 \cdot 4 = 24$.
19.	A right triangle has legs of length 20 and 21.	34.	Find a solution for the following 24: 3, 3, 3, 3
	Compute the hypotenuse of this right triangle.	35.	Find a solution for the following 24: 5, 5, 5, 5
20.	How many rectangles are in the following		For the last five questions, find the next two
			terms in the sequence indicated by the _
	figure:	36.	$M,T,W,T,_$,_
21.	How many 5-digit palindromes are there?	37.	$S, F, W, S, S, _, _$
22.	How many distinguishable ways are there to	38.	0, T, T, F, F,,
	rearrange the letters in <i>JEFFREY</i> ?	39.	$M, V, E, M, J, _, _$
23.	Find the constant term of $\left(x^2 + 2 + \frac{1}{x}\right)^3$?	40.	$D, H, Q, D, _, _$
23.	Find the constant term of $\left(x + 2 + \frac{1}{x}\right)$?		