#0 Mu School Bowl MA© National Convention 2023

Let *X* be the binary representation of a number such that

$$23_{20} + 20_{23} + 23_{2023} + 2023_4 = X_2$$

How many times does the digit 1 appear in X?

#0 Mu School Bowl MA© National Convention 2023

Let *X* be the binary representation of a number such that

$$23_{20} + 20_{23} + 23_{2023} + 2023_4 = X_2$$

How many times does the digit 1 appear in X?

#1 Mu School Bowl MA® National Convention 2023

Let \mathcal{L}_1 be the line tangent to the graph of $y = 2x^3 - 2x - 4$ at x = 1.

Let \mathcal{L}_2 be the line tangent to the graph of $y = \frac{2}{x^2 + 1}$ at x = 1.

Let \mathcal{L}_3 be the line tangent to the graph of $y = \sin^2(\pi x) + x + 4$ at x = -1.

 \mathcal{L}_1 and \mathcal{L}_2 intersect at the point A. \mathcal{L}_1 and \mathcal{L}_3 intersect at the point B. \mathcal{L}_2 and \mathcal{L}_3 intersect at the point C.

Find the area of triangle ABC.

#1 Mu School Bowl MA© National Convention 2023

Let \mathcal{L}_1 be the line tangent to the graph of $y = 2x^3 - 2x - 4$ at x = 1.

Let \mathcal{L}_2 be the line tangent to the graph of $y = \frac{2}{x^2 + 1}$ at x = 1.

Let \mathcal{L}_3 be the line tangent to the graph of $y = \sin^2(\pi x) + x + 4$ at x = -1.

 \mathcal{L}_1 and \mathcal{L}_2 intersect at the point A. \mathcal{L}_1 and \mathcal{L}_3 intersect at the point B. \mathcal{L}_2 and \mathcal{L}_3 intersect at the point C.

Find the area of triangle *ABC*.

#2 Mu School Bowl MA⊖ National Convention 2023

Let *A* be the sum of the real solutions to the relation $x = \log_2(x + \log_2(x + \log_2(x + \cdots \log_2(x)) \dots))$

Let B be the number of values of θ in $[0, \pi)$ for which

$$\frac{-1+\sqrt{3}}{2} = \frac{\cos(2023\theta)}{1+\frac{\cos(2023\theta)}{1+\frac{\cos(2023\theta)}{1+\cdots}}}$$

Find A + B.

#2 Mu School Bowl MA⊕ National Convention 2023

Let *A* be the sum of the real solutions to the relation $x = \log_2(x + \log_2(x + \log_2(x + \cdots \log_2(x)) \dots))$

Let B be the number of values of θ in $[0, \pi)$ for which

$$\frac{-1+\sqrt{3}}{2} = \frac{\cos(2023\theta)}{1+\frac{\cos(2023\theta)}{1+\frac{\cos(2023\theta)}{1+\cdots}}}$$

Find A + B.

#3 Mu School Bowl MA® National Convention 2023

Let
$$A = \int_0^\infty \frac{\ln(x)}{x^2 + 2024x + 2023} dx$$

Let
$$B = \int_1^2 e^{-x^2} dx$$

Let
$$C = \int_{1/e}^{1/e^4} \sqrt{\ln\left(\frac{1}{x}\right)} dx$$

Let
$$D = \int_0^\infty \frac{\ln(x)}{2023x^2 + 2024x + 1} dx$$

Find $(A + B + C + D)e^5$.

#3 Mu School Bowl MA⊚ National Convention 2023

Let
$$A = \int_0^\infty \frac{\ln(x)}{x^2 + 2024x + 2023} dx$$

Let
$$B = \int_1^2 e^{-x^2} dx$$

Let
$$C = \int_{1/e}^{1/e^4} \sqrt{\ln\left(\frac{1}{x}\right)} dx$$

Let
$$D = \int_0^\infty \frac{\ln(x)}{2023x^2 + 2024x + 1} dx$$

Find $(A + B + C + D)e^5$.

#4 Mu School Bowl MA⊕ National Convention 2023

Note that the domain of all variables in this question are all real numbers.

Let A be the maximum value of $6 \sin(2023x) + 8 \cos(2023x)$

Let *B* be the maximum value of $2023 + 18x - 3x^2$

Let C be the maximum value of xyz given that 20x + 2y + 3z = 6 and x, y, z > 0

Let *D* be the maximum value of 3x + 6y + 22z given that $x^2 + y^2 + z^2 = 25$

Find (A + B + D)C.

#4 Mu School Bowl MA⊗ National Convention 2023

Note that the domain of all variables in this question are all real numbers.

Let A be the maximum value of $6 \sin(2023x) + 8 \cos(2023x)$

Let *B* be the maximum value of $2023 + 18x - 3x^2$

Let C be the maximum value of xyz given that 20x + 2y + 3z = 6 and x, y, z > 0

Let *D* be the maximum value of 3x + 6y + 22z given that $x^2 + y^2 + z^2 = 25$

Find (A + B + D)C.

#5 Mu School Bowl MA⊕ National Convention 2023

Let *A* be the minimum value of $y = \frac{e^{x^2}}{x}$ for positive *x*.

Let *B* be the maximum value of $y = \frac{x+3}{x^2+3x+4}$.

Let *C* be the maximum slope of a tangent line to the curve $y = e^{-\frac{1}{18}(x-2)^2}$.

Let *D* be the number of relative extrema on the graph of $y = (x-2)^2(x-3)^3(x-4)^4$

Find $\frac{A}{C} + B + D$.

#5 Mu School Bowl MA⊕ National Convention 2023

Let *A* be the minimum value of $y = \frac{e^{x^2}}{x}$ for positive *x*.

Let *B* be the maximum value of $y = \frac{x+3}{x^2+3x+4}$.

Let *C* be the maximum slope of a tangent line to the curve $y = e^{-\frac{1}{18}(x-2)^2}$.

Let *D* be the number of relative extrema on the graph of $y = (x-2)^2(x-3)^3(x-4)^4$

Find $\frac{A}{C} + B + D$.

#6 Mu School Bowl MA© National Convention 2023

Anagh is standing motionless at the origin, and Alan is motionless at the point (4,0).

At time T, Srijan is at the point (-2,2) and is moving upward parallel to the positive y-axis at a rate of 7 units per minute.

At time T, Luke is at the point (5,1) and is moving rightward parallel to the positive x-axis at a rate of 5 units per minute.

Let A be the rate of change of the distance between Srijan and Luke at time T.

Let B be the rate of change of the tangent of the angle formed by the x-axis and the line connecting Anagh and Luke at time T.

Let *C* be the rate of change of the area of the quadrilateral formed by Anagh, Alan, Luke, and Srijan at time *T*.

Find 10(A + B + C)

#6 Mu School Bowl MA® National Convention 2023

Anagh is standing motionless at the origin, and Alan is motionless at the point (4,0).

At time T, Srijan is at the point (-2,2) and is moving upward parallel to the positive y-axis at a rate of 7 units per minute.

At time T, Luke is at the point (5,1) and is moving rightward parallel to the positive x-axis at a rate of 5 units per minute.

Let *A* be the rate of change of the distance between Srijan and Luke at time *T*.

Let B be the rate of change of the tangent of the angle formed by the x-axis and the line connecting Anagh and Luke at time T.

Let *C* be the rate of change of the area of the quadrilateral formed by Anagh, Alan, Luke, and Srijan at time *T*.

Find 10(A + B + C)

#7 Mu School Bowl MA© National Convention 2023

Let
$$A = \int_0^\pi \frac{\sin(x)}{\cos^2(x)+1} dx$$

Let
$$B = \int_0^{\frac{\pi}{3}} \pi \sin(x) \cos(\pi \cos(x)) dx$$

Let
$$C = \int_{-\infty}^{\infty} e^{-|x|} dx$$

Let
$$D = \int_0^\infty x^2 e^{-x^3} dx$$

Find $(A + B\pi)CD$

#7 Mu School Bowl MA⊕ National Convention 2023

Let
$$A = \int_0^\pi \frac{\sin(x)}{\cos^2(x)+1} dx$$

Let
$$B = \int_0^{\frac{\pi}{3}} \pi \sin(x) \cos(\pi \cos(x)) dx$$

Let
$$C = \int_{-\infty}^{\infty} e^{-|x|} dx$$

Let
$$D = \int_0^\infty x^2 e^{-x^3} dx$$

Find $(A + B\pi)CD$

#8 Mu School Bowl MA⊖ National Convention 2023

The values a_1 and a_3 are chosen uniformly at random with replacement from the set $\{\pm 1, \pm 2, \pm 3\}$

Let A be the probability that the graph of $a_1x^2 + 4xy + a_3y^2 = 2023$ is a non-degenerate ellipse. (In other words, when graphed on the Cartesian plane, the graph is an ellipse with positive area).

Let *B* be the probability that the area contained by the graph of $a_1x^2 + 4xy + a_3y^2 = 2023$ is less than or equal to 2023π , given that the graph of $a_1x^2 + 4xy + a_3y^2 = 2023$ is a non-degenerate ellipse.

Find $\frac{1}{4} + B$.

#8 Mu School Bowl MA⊕ National Convention 2023

The values a_1 and a_3 are chosen uniformly at random with replacement from the set $\{\pm 1, \pm 2, \pm 3\}$

Let *A* be the probability that the graph of $a_1x^2 + 4xy + a_3y^2 = 2023$ is a non-degenerate ellipse. (In other words, when graphed on the Cartesian plane, the graph is an ellipse with positive area).

Let *B* be the probability that the area contained by the graph of $a_1x^2 + 4xy + a_3y^2 = 2023$ is less than or equal to 2023π , given that the graph of $a_1x^2 + 4xy + a_3y^2 = 2023$ is a non-degenerate ellipse.

Find $\frac{1}{A} + B$.

#9 Mu School Bowl MA⊖ National Convention 2023

Let $f_1(x) = kx(\alpha - x)$. If $\int_0^a f_1(x) dx = 1$ and $\int_0^a x f_1(x) dx = 2$, find $A = \int_0^a x^2 f_1(x) dx - 4$. Express A as a numerical value <u>not</u> in terms of k or α .

Let $f_2(x) = \frac{1}{x^2}$. Sharvaa flips a fair coin, and picks $f_1(x)$ if it is heads and $f_2(x)$ if it is tails. The probability that Sharvaa attends practice is $\int_3^a f_1(x) dx$ if he picks $f_1(x)$, or $\int_3^\infty f_2(x) dx$ if he picks $f_2(x)$. If Sharvaa does indeed attend practice, let B be the probability that $f_1(x)$ was chosen. Express B as a numerical value <u>not</u> in terms of k or α .

Find AB.

#9 Mu School Bowl MA⊕ National Convention 2023

Let $f_1(x) = kx(\alpha - x)$. If $\int_0^a f_1(x) dx = 1$ and $\int_0^a x f_1(x) dx = 2$, find $A = \int_0^a x^2 f_1(x) dx - 4$. Express A as a numerical value <u>not</u> in terms of k or α .

Let $f_2(x) = \frac{1}{x^2}$. Sharvaa flips a fair coin, and picks $f_1(x)$ if it is heads and $f_2(x)$ if it is tails. The probability that Sharvaa attends practice is $\int_3^a f_1(x) dx$ if he picks $f_1(x)$, or $\int_3^\infty f_2(x) dx$ if he picks $f_2(x)$. If Sharvaa does indeed attend practice, let B be the probability that $f_1(x)$ was chosen. Express B as a numerical value <u>not</u> in terms of k or α .

Find AB.

#10 Mu School Bowl MA® National Convention 2023

Consider the following lines in three-dimensional Cartesian space:

Line
$$\mathcal{L}_1$$
: $x + 1 = \frac{y-1}{2} = \frac{z-3}{2}$

Line
$$\mathcal{L}_2$$
: $\frac{x-1}{2} = \frac{y-3}{3} = \frac{z+2}{6}$

Let D_1 be the minimum distance between the point (2,2,3) and \mathcal{L}_1 . $D_1^2 = \frac{m}{n}$ in simplest form, A = m + n.

Let D_2 be the minimum distance between \mathcal{L}_1 and \mathcal{L}_2 . $D_2^2 = \frac{m}{n}$ in simplest form. B = m + n.

Find A + B.

#10 Mu School Bowl MA® National Convention 2023

Consider the following lines in three-dimensional Cartesian space:

Line
$$\mathcal{L}_1$$
: $x + 1 = \frac{y-1}{2} = \frac{z-3}{2}$

Line
$$\mathcal{L}_2$$
: $\frac{x-1}{2} = \frac{y-3}{3} = \frac{z+2}{6}$

Let D_1 be the minimum distance between the point (2,2,3) and \mathcal{L}_1 . $D_1^2 = \frac{m}{n}$ in simplest form, A = m + n.

Let D_2 be the minimum distance between \mathcal{L}_1 and \mathcal{L}_2 . $D_2^2 = \frac{m}{n}$ in simplest form. B = m + n.

Find A + B.

#11 Mu School Bowl MA© National Convention 2023

A differentiable function f(x) attains the following values:

x =	0	1	2	3	4	5	6
f(x) =	20	23	71	63	32	73	19

Let *L* be the approximation of $\int_0^6 f(x)dx$ using a left-handed Riemann sum with three equal subintervals.

Let R be the approximation of $\int_0^6 f(x)dx$ using a right-handed Riemann sum with three equal subintervals.

Let *M* be the approximation of $\int_0^6 f(x)dx$ using a midpoint Riemann sum with three equal subintervals.

Let *S* be the approximation of $\int_0^6 f(x)dx$ using Simpson's rule with six equal subintervals.

Find R + L + 5M - 6S.

#11 Mu School Bowl MA© National Convention 2023

A differentiable function f(x) attains the following values:

x =	0	1	2	3	4	5	6
f(x) =	20	23	71	63	32	73	19

Let *L* be the approximation of $\int_0^6 f(x)dx$ using a left-handed Riemann sum with three equal subintervals.

Let R be the approximation of $\int_0^6 f(x)dx$ using a right-handed Riemann sum with three equal subintervals.

Let M be the approximation of $\int_0^6 f(x)dx$ using a midpoint Riemann sum with three equal subintervals.

Let *S* be the approximation of $\int_0^6 f(x)dx$ using Simpson's rule with six equal subintervals.

Find R + L + 5M - 6S.

#12 Mu School Bowl MA© National Convention 2023

Let
$$A = \lim_{x \to 3} \frac{x^3 - 3x^2 + 4x - 12}{x^2 + x - 12}$$

Let
$$B = \lim_{x \to \infty} \frac{x^2 - 3x^3 + 4x - 12}{x^2 + x^3 - 12}$$

Let
$$C = \lim_{x \to 0} (1 + 2023x)^{\frac{2}{x}}$$

$$Let D = \lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$$

Find $70A + B + \ln(C) + D$

#12 Mu School Bowl MA© National Convention 2023

Let
$$A = \lim_{x \to 3} \frac{x^3 - 3x^2 + 4x - 12}{x^2 + x - 12}$$

Let
$$B = \lim_{x \to \infty} \frac{x^2 - 3x^3 + 4x - 12}{x^2 + x^3 - 12}$$

Let
$$C = \lim_{x \to 0} (1 + 2023x)^{\frac{2}{x}}$$

Let
$$D = \lim_{x \to 9} \frac{x-9}{\sqrt{x}-3}$$

Find $70A + B + \ln(C) + D$

#13 Mu School Bowl MA© National Convention 2023

Let
$$A = \sum_{n=1}^{K} 2023$$

Let
$$B = \sum_{n=1}^{2023} n$$

Let
$$C = \sum_{n=1}^{2023} n^2$$

Let
$$D = \sum_{n=1}^{2023} n^3$$

Find the smallest positive value of K so that $gcd\left(A, \frac{BC}{D}\right) > 1$

#13 Mu School Bowl MA© National Convention 2023

Let
$$A = \sum_{n=1}^{K} 2023$$

Let
$$B = \sum_{n=1}^{2023} n$$

Let
$$C = \sum_{n=1}^{2023} n^2$$

Let
$$D = \sum_{n=1}^{2023} n^3$$

Find the smallest positive value of K so that $gcd\left(A, \frac{BC}{D}\right) > 1$

#14 Mu School Bowl MA® National Convention 2023

The partial fraction decomposition of $\frac{25}{(x-2)^2(x^2+1)}$ is $\frac{Ax+B}{x^2+1} + \frac{C}{x-2} + \frac{D}{(x-2)^2}$.

Find A + B + C + D.

#14 Mu School Bowl MA© National Convention 2023

The partial fraction decomposition of $\frac{25}{(x-2)^2(x^2+1)}$ is $\frac{Ax+B}{x^2+1} + \frac{C}{x-2} + \frac{D}{(x-2)^2}$.

Find A + B + C + D.