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1.  A 

We can rewrite the limit as lim
𝑥→0

𝑒
tan 𝑥 ln(1+

1

𝑥2)
= 𝑒

ln(1+
1

𝑥2) 

cot 𝑥 , and by L’Hopital on the 

exponent, we find that it has limit 0, which implies that the answer is 1. 

2. D We can verify that the limit exists from the positive side, but does not on the 

negative side, so the limit itself does not exist. 

3. A We first check and see that the direct substitution results in 0/0. We then apply 

L’Hospitals to get 
𝑓′(𝑥)

2𝑥
=

ln 𝑓(𝑥)

2
 as the limit expression. Since 𝑓(1) = 2, we see the 

limit is ln √2. 

4. A We see that the lowest power term that exists in the difference between Taylor 

expansions of 𝑓 and 𝑒𝑥 is the 𝑥2 term, where 𝑓 has a 
2

2
= 1 coefficient and 𝑒𝑥 has a 

1

2
 

coefficient. So 𝑘 = 2 and the limit comes out to 1 −
1

2
=

1

2
. This makes the product 1. 

5. B Note that |𝑥|2 = 𝑥2, so this is just (22) − (−1)2 = 3. 
6. C We can either L’Hopital’s twice, or we can use Taylor Expansions and compare the 

𝑥2 terms. Doing this, we see that sin 𝑥 = 𝑥 − 𝑂(𝑥3) and ∫ cos 𝑥2 𝑑𝑥
𝑥

0
= 𝑥 − 𝑂(𝑥5), 

so sin 𝑥 ∫ cos 𝑥2 𝑑𝑥
𝑥

0
= 𝑥2 − 𝑂(𝑥4), which makes the limit 1 by the ratio of 

coefficients. 

7. D We see that this limit has drastically different behaviors for odd 𝑛 and even 𝑛, so this 

limit will not converge. 

8. B Recognize the numerator of the integral as a quotient rule expression, where 

(1 + 𝑥2)𝑓′(𝑥) − 2𝑥𝑓(𝑥) = 1 − 2𝑥 arctan 𝑥 ⇒ 𝑓(𝑥) = arctan 𝑥. Therefore, this 

integral is 
arctan 𝑥

𝑥2+1
 evaluated at 1 and 0, or 

𝜋

8
− 0 =

𝜋

8
. 

9. C 
We can rewrite this as (

arcsin 𝑥+arccos 𝑥

arcsin 𝑥 arccos 𝑥
)

−1

= (
𝜋

2 arcsin 𝑥 arccos 𝑥
)

−1

=
2

𝜋
arcsin 𝑥 arccos 𝑥. We can differentiate to get 

2

 𝜋

1

√1−𝑥2 
arccos 𝑥 −

2

𝜋

1

√1−𝑥2
arcsin 𝑥. To find horizontal tangents, we need this to be 0, or arccos 𝑥 =

arcsin 𝑥, which occurs only at 𝑥 =
1

√2
. The function at this value is 

𝜋

8
, which has floor 

0.  

10. B We can use a similar trick as in question 1 to see that the limit is 1, but only from this 

direction. 

11. D We are effectively trying to compute lim
𝑥→0

𝑥𝑥 − 1

𝑒𝑥
, but the limit of 𝑥𝑥 does not exist 

from the negative direction, so this does not exist. 

12. B 𝑓′(𝑥) = ln2 𝑥 + 2 ln 𝑥 ⇒ 𝑓′′(𝑥) =
2 ln 𝑥

𝑥
+

2

𝑥
.  𝑓′ changes signs at ln 𝑥 =

0, ln 𝑥 = −2, so these are mins/maxes, and 𝑓′′ changes signs at ln 𝑥 = −1, so this is 

an inflection point. 

13. B The first derivative is 0 and the second derivative is negative from the Taylor 

polynomial, so the point is a local maximum. 

14. A If we apply the function 𝑓 to both sides we get 𝑥 = 𝑓(𝑒𝑥 + 𝑥 − 1) ⇒ 1 =
𝑓′(𝑒𝑥 + 𝑥 − 1)(𝑒𝑥 + 1). Note that 𝑥 = 0 is the only root to 𝑒𝑥 + 𝑥 − 1 = 0 (verify 

since its derivative is 𝑒𝑥 + 1 > 0, so it can only have one root),  so we have 1 =

2𝑓′(0) ⇒ 𝑓′(0) =
1

2
. 



Mu Limits and Derivatives Solutions    2023 MA National Convention 

 

15. C Note that (1 − 𝑥)𝑓(𝑥) = 1 − 𝑥2023 ⇒ 𝑓(2) = 22023 − 1. We also know by taking 

the derivative of the expression that (1 − 𝑥)𝑓′(𝑥) − 𝑓(𝑥) = −2023𝑥2022 ⇒ 𝑓(2) +
𝑓′(2) = 2023 ⋅ 22022. We can differentiate again to get that (1 − 𝑥)𝑓′′(𝑥) −
2𝑓′(𝑥) = −2023 ⋅ 2022𝑥2021 ⇒ 𝑓′′(2) + 2𝑓′(2) = 2023 ⋅ 2022 ⋅ 22021. 

Subtracting two of the second equation from the third gets 𝑓′′(2) − 2𝑓(2) = 2023 ⋅
2022 ⋅ 22021 − 2023 ⋅ 22023 = 2023 ⋅ 2014 ⋅ 22021. Adding two of the first 

equation gives 𝑓′′(2) = (2023 ⋅ 2014 + 8) ⋅ 22021 − 2, which makes the log floor 

2021 + log2(2023 ⋅ 2014 + 8) = 2021 + 21 = 2042. 
16. C We need the graph to look like a perfect square after taking away the linear 

approximation, so 𝑥2 − 𝑎2𝑥 + 12 − (𝑎1𝑥 − 4) = 𝑥2 − (𝑎1 + 𝑎2)𝑥 + 16 needs to be 

a square for this to be tangent. Therefore, 𝑎1 + 𝑎2 =  ±8, which makes the sum 0. 
17. C The 2023rd iteration will be very close to the true value. So 𝑓′(𝑥) − 𝑓(𝑥) =

(𝑥 + 1)𝑒𝑥 − 𝑥𝑒𝑥 = 𝑒𝑥. We need to evaluate 𝑒0.1, so we will now use the Taylor 

polynomial to get that 𝑒0.1 = 1 + 0.1 + 0.005 + 0.0003333. . + ⋯ , which is closer 

to 1.11 than it is to 1.10. 
18. A We can factor this as sin 𝑥 cos 𝑥 (cos2 𝑥 + sin2 𝑥) = sin 𝑥 cos 𝑥 which has 

maximum value 
1

2
. 

19. C We can differentiate to get 𝑓′(𝑥) = ln2(𝑥) + 3 ln(𝑥) + 2 = (ln(x) + 1)(ln(𝑥) +

2).  Our critical points are at 𝑥 =
1

𝑒
 and 𝑥 =

1

𝑒2 since the derivative is zero at both 

points and both points lie in the domain of 𝑓(𝑥). For positive x, there are 2 critical 

points.   

20. C We can apply the IVT by noting that 𝑓(12) < 0 and 𝑓(13) > 0 and that 𝑓 is a 

polynomial function so it is continuous.  

21. B The continuous analogue of this problem (making assumption of equality) is to 

maximize the function 𝑓(𝑥) = 𝑥
50

𝑥 ,  which one can verify to have global maximum 

value at 𝑥 = 𝑒. We can check 𝑥 = 2 and 𝑥 = 3 to see which integer is better to use 

as the main source, we see that 225 < 2 ⋅ 316 by taking the 8th root of both sides. 

Thus, 𝑛 = 1 + 16 = 17. 
22. B 𝑓(𝑥) + 𝑓′(𝑥) = (2𝑥 + 1)𝑒𝑥. We can differentiate to get the derivative of this 

expression is (2𝑥 + 3)𝑒𝑥, so the minimum occurs at 𝑥 = −
3

2
. 

23. C Note that the tangent line to the curve is 3𝑥 + 4𝑦 = 5. This means that at any point 

on the line, 3𝑥 + 4𝑦 is constant, and so this intersection is no different and has value 

5. 
24. B 

tan 𝜃 =
𝑥

75
⇒ sec2 𝜃

𝑑𝜃

𝑑𝑡
=

1

75

𝑑𝑥

𝑑𝑡
⇒

𝑑𝜃

𝑑𝑡
=

1

75
 20

9

25
=

12

125
. 

25. B We can multiply both sides by 𝑟 to get that 𝑟2 = 𝑟 + 𝑟 sin 𝜃 ⇒ 𝑦 = 𝑟2 − 𝑟. We see 

by differentiating that the minimum 𝑦 occurs at 𝑟 =
1

2
, where 𝑦 = −

1

4
. Note that 𝑟 is 

and must be nonnegative. 

26. A Note that the LHS is a product rule expression, so integrating out gives us that 𝑥𝑦2 =
sin 𝑥 + 𝐶. Since it contains (0,1), we know that 𝐶 = 0. Therefore, we have that 

(0, −1) is also contained. 

27. E To find critical points of the rotated graph, we need points that have tangent lines 

that will be vertical or horizontal after rotation. In other words, points where the 
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slope is -1 or 1 in the old graph. Solving −2 + 3𝑥2 =  −1  yields two solutions and 

−2 + 3𝑥2 = 1 yields two more distinct solutions, so the new graph would have 4 

critical points. 

28. D The radius of convergence is 
1

2
, so this limit must be 2 by the ratio test. 

29. A Here we can use up to the 𝑥2 term in each power series to get that 

lim
𝑥→0

1−(1−
𝑥2

2
+𝑂(𝑥4))

(𝑥+
4𝑥2

3
+𝑂(𝑥3))−𝑥

=
3

8
. 

30. A The initial condition and differential equation imply that 𝑓(𝑥) = 𝑒𝑥. Therefore, 
𝑎𝑛

𝑛+1
=

1

𝑛!
⇒ 𝑎𝑛 =

𝑛+1

𝑛!
, so 𝑎3 =

4

6
=

2

3
.   

 

 


