1. D
$$5N + 25Q = 320$$
$$N + Q = 28$$
$$N = 9, Q = 19, N * Q = 171$$

- 2. A Orange marbles = 26 9 4 5 = 8. $\frac{{}_{8}C_{2}}{{}_{26}C_{2}} = \frac{28}{325}$
- 3. D Fence left after one hour: $\frac{11}{12}$. Pedro and Juan's rate: $\frac{1}{12} + \frac{1}{8} = \frac{5}{24}$.

 Fence left after three hours: $\frac{11}{12} \frac{10}{24} = \frac{12}{24} = \frac{1}{2}$. Pedro, Juan, and Paul's rate: $\frac{1}{12} + \frac{1}{8} + \frac{1}{6} = \frac{9}{24}$. After Paul joins, the fence is completed in $\frac{1}{2} \div \frac{9}{24} = \frac{12}{9} = \frac{4}{3}$ hours. Total time $= \frac{4}{3} + 3 = \frac{13}{3}$
- 4. A Galen completes the race in $400 \div 4 = 100$ seconds. Mo runs 100 * 5 = 500 meters in that time. 500 400 = 100

5. C
$$F + V = E + 2$$

 $F = 20, V = 30, \text{ so } E = 48$

- 6. B Reflect (6,9) across the line y = x to get (9,6). Distance formula between (-2,5) and (9,6) gives you $\sqrt{122}$
- 7. B Probability that Caleb wins = $\frac{2}{3} * \frac{2}{3} * \frac{1}{3} + \left(\frac{2}{3} * \frac{2}{3} * \frac{2}{3} * \frac{2}{3} * \frac{2}{3} * \frac{1}{3} + \dots = \frac{4}{27} + \left(\frac{16}{81}\right) * \frac{4}{27} + \dots = \frac{\frac{4}{27}}{1 \frac{16}{81}} = \frac{12}{65}$
- 8. B $A = P\left(1 + \frac{r}{n}\right)^{nt} = 100,000(1 + \frac{0.3}{3})^{3*1} = 100,000(1.1)^3 = 133,100$
- 9. D River

X X

400-2X

$$Area = x(400 - 2x) = 400x - 2x^2; -\frac{b}{2a} = 100; 100 * 200 = 200,00$$

$$100 + 2\left(\frac{10}{1 - \frac{1}{10}}\right) = 100 + \frac{200}{9} = \frac{1100}{9}$$

11. E

revenue =
$$(10 + x)(38,000 - 1500x) = 380,000 + 23,000x - 1500x^2; -\frac{b}{2a}$$

= $\frac{-23,000}{-3000} \approx 8; 10 + 8 = 18$

12. A Take the conjugates of the imaginary roots and include them in the polynomial.

$$(x-1)(x-2+i)(x-2-i)(x-1+3i)(x-1-3i)$$

= $x^5 - 7x^4 + 29x^3 - 73x^2 + 100x - 50$

Concentration	Amount	Total
2/5	5	2
1	x	x
4/5	5+x	2+x

$$\frac{4}{5}(5+x) = 2+x; x = 10$$

Concentration	Amount	Total
4/5	15	12
1/2	у	12+y/2
3/5	15+y	24+y/2

$$\frac{3}{5}(15+y) = 24 + \frac{y}{2}; y = 30$$

14. D Distance from point to line formula

$$\frac{|Aa + Bb - C|}{\sqrt{a^2 + b^2}} = \frac{|-93|}{10} = \frac{93}{10}$$

$$100 + {}_{100}C_2 - 20 * {}_{5}C_2 = 4850$$

16. C

$$625\pi * \frac{3}{4} + 25\pi * \frac{1}{4} + 225\pi * \frac{1}{4} = \frac{2125\pi}{4}$$

17. A
$$Score = \alpha * \frac{Studying * \sqrt{Sleep}}{DND}$$
; $60 = \alpha * \frac{2 * \sqrt{4}}{8}$; $\alpha = 120$; $120 * \frac{1 * \sqrt{9}}{4} = 90$

18. B Usain: 200m in 20 seconds.

Justin: 180m in 20 seconds $\frac{180}{20} = \frac{200}{x}$; $x = \frac{200}{9}$. It takes Justin $\frac{200}{9}$ seconds to travel 200m.

Justin: 200m in 200/9 seconds

Andre: 185m in 200/9 seconds. $\frac{185}{\frac{200}{9}} = \frac{y}{20}$; y = 166.5; Andre travels 166.5m in 20

seconds. Usain travels 200m in 20 seconds. 200 - 166.5 = 33.5

19. D
$$55 * 55 = 3025; 50 * 20 = 1000; \frac{10000 - 3025}{1000} = \frac{279}{40}$$

20. A
$$x^6 - 5x^5 - 36x^4 + 170x^3 - 91x^2 - 165x + 126$$

= $(x-1)^2(x+1)(x-3)(x-7)(x+6)$; $1^3 + 3^3 + (-1)^3 + 7^3 + (-6)^3 = 154$

21. C
$$\left| 25 - \left| 6 + \left| 8 - x \right| \right| \right| < 13;$$

Case 1: 25 - |6 + |8 - x|| < 13; |6 + |8 - x|| > 12

Case 1a: 6 + |8 - x| > 12; |8 - x| > 6; x < 2, x > 14

Case 1b: 6 + |8 - x| < -12; \emptyset

Case 2: 25 - |6 + |8 - x|| > -13; |6 + |8 - x|| < 38

Case 2a: 6 + |8 - x| < 38; |8 - x| < 32; -24 < x, x < 40

Case 2b: 6 + |8 - x| > -38; All real numbers satisfy this.

Constraints: x < 2, x > 14, -24 < x, x < 40

Intervals: -24 < x < 2, 14 < x < 40. 50 integers satisfy the equation.

22. D
$$q^2 = 12$$
; $q = \pm 2\sqrt{3}$; $p = -2q = \pm 4\sqrt{3}$; $p > 0 \rightarrow p = 4\sqrt{3}$; $q = -2\sqrt{3}$; $pq + p + q = -24 + 2\sqrt{3}$

23. B (Number of cases where Albert and Ben are next to each other) – (number of cases where Caroline and Emily are next to each other, and Albert and Ben are next to each other).

$$4! * 2 - 3! * 2 * 2 = 24$$

24. B Since half the number of cows have 4 legs and the other half have 5 legs, the average number of legs each cow has is 4.5

$$x = cow, y = chicken$$

$$x + y = 72$$

$$4.5x + 2y = 249$$

 $x = 42, y = 30; 30 - 21 = 9$

25. C The resulting shape is 2 cones facing the opposite directions with a cylinder separating them. The cones have height $\frac{7}{2}$ and radius 12, while the cylinder has height 9 and radius 12.

$$Volume = \pi r^2 h_{cylinder} + 2 * \frac{1}{3} \pi r^2 h_{cone} = 1632\pi$$

- 26. A 3 half life cycles for 32.1 seconds. $\frac{32.1}{3} = 10.7$
- 27. D Time it takes for package to fall = $\frac{10,000}{128}$. Horizontal distance = horizontal velocity * time = $10,000 * 800 \div 128 = 62,500$.
- 28. A (Number of ways you can choose 3 points) (Number of degenerate triangles).

$$_{18}C_3 - _{4}C_3 - _{5}C_3 - _{6}C_3 - _{7}C_3 = 747$$

29. E

Bio

$$x + \frac{x}{3} + 3 + 5 = 32; x = 18$$

Algebra II+Chem = $54 + 32 - 9 = 77$
Chem only = $99 - 77 = 22$

30. A Let p be the total number of points the students scored originally and let n be the number of students originally in her fourth period. Thus, $76 = \frac{p}{n}$. However, with the addition of Albert, $82 = \frac{p+100}{n+1}$. Solving the system of equations, we get n = 3.