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The latus rectum is equal to 4p, the distance between the focus and the directrix is
equal to 2p, and focal length is p. Therefore we have 22222 = ¢,
V=2-2m(2)(2)(3) =8

2x+ 3y =-1
2x—3y =5
hyperbola. Since the slope is + § this makes a? = 9 and b? = 4. Thus the equation
CE L

Solving the system we get x = 1,y = —1, which is the center of the

of the hyperbola is

9 4
Let a = vx. We now have a? — 3a + 9. This minimum is located when
a=-2=32 Using our substitution, this makes x = 2 and f (3) =2 or6.75
2 2 4 4 4

x%? — 5x + 6 < 0 when x is between 2 and 3. Using these values as our bounds, y =
x% + 5x + 6 takes on values from 20 to 30.
There’s only one point of integers that satisfy this equation and that is (6,5).

We need to find where b? — 4ac > 0. (4\/§)2 — 4(k)(k — 1) = 0. This simplifies
to k2 — k — 12 < 0. Solving for the critical values we get k = —3 and k = 4. 4 is
the largest value.

Solving the linear equation for y we get y = 1 — x. Substituting into the circle
equation we get (x — 3)%2 + (6 — x)? = 9. This simplifiesto x? —9x + 18 = 0
which gives us x = 3 and x = 6. The intersection points are (3, —2) and (6, —5).
The distance between these two points is 3v/2.

Let take the parabola y = x? — 2x — 8. The vertex is (1, —9) and a point on the
parabola is (4,0). Reflecting this parabola over the line y = —9, the vertex stays the
same but the reflected point translate to (4, —18). Using the vertex and the new
point, the equation of the reflected parabola is y = —x2 + 2x — 10. Adding the
coefficients of the old and new parabolaweget1 —2—-8—-1+2—-10 = —-18.
Therefore, the answer in question is 2k.

The vertex of f(x) is (—3, —4) and the vertex of g(x) is (1,2). The translation from
f to g isright 4, up 6, hence the answer is D.

2_
@b _ latb) ~2ab 1he sum of the roots is — 4 and the product of the roots is 1,

b a
—4)2_
therefore we have le(l) = 14.

c

e =——>§=i—> a = 3 and ¢ = 1. Therefore b = V32 — 12 = 2+/2. Double to find

a

the length of the minor axis which is 4+/2.

Using B2 — 4AC we have 32 — 4(1)(—4) = 13. Since the value is positive and the
conic is not degenerate, this is a hyperbola.

The equation of the parabola is 8(y — 3) = (x + 1)? with a latus rectum equal to 8.
The circle in question has a radius of 2 and equation of (x + 1)? + (y — 5)? = 4.
Therefore, the point (0,5 + /3) lies on the circle.

The center of this hyperbola will be the intersection of the vertical asymptote (x =
1) and horizontal asymptote (y = 4), thus the center is (1,4).
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16. B The width of the rectangle is 2c. So, ¢ = V13 — 9 = 2 s0 2¢ = 4. The length of the

2
rectangle is equal to the latus rectum of the ellipse which can be found by % =
20) _ 18V8 e area i 4 - 12V = 7215
Vi3 13 13 13

17. C (R*—-7r¥)mr=10mrandR +7 =5.Sowe have (R+r)(R —r)mr = 10w -

(R—r)-5=10m. So R —r = 2. Solving the system R+r=5

erw R =
R—r 0 e get

7

2
18. D x?+4+4y?2—-8y+k?=0- x>+ 4(y —1)? = —k? + 4. This ellipse will be
imaginary when—k? + 4 < 0 - k? > 4 which is true when k < =2 or k > 2.
19. D R = abc _ _ 7-8:9 _ 215
4(Area)  4(V12:34°5) 10
20. D The conic in question is a hyperbola therefore the number of linear permutations is
9! = 362880

Using the system y = ax? + bx + ¢, we get the system 4

a+b=5
2b =12

gives the parabola x = y? + 4y — 5. The y —coordinate of the vertex is y =
4

21. C Solving

I
22. C  perimeter = 2r + — (an) = 2r + Or = 10 and the area = — (nrz) ==0r2 =4,

Therefore, 6 = r_2 : Maklng the substitution we have 2r + ; = 10. Solvmg for r we
getr =4,1. Whenr =4,0 = %which works but when r = 1,6 = 8, which we
reject because 8 > 2.

23. C 6xy+2y?—5y—13=0
4xy +2y* -3y —12=0
4 5 4 5 5
2,2 Therefore, AC + BD = (E) (—) + (— —) (2) = —4.

4
24. A gince point Q must be on the same chord as point P and the focus ( ) then

Mpp = Mpq. Let Q(x,y).

—>2y2+y—10=0—>y=—§,2.Thisgivesx=

°"3_317Y
_3 —_

35 _ 3.,
2 X T Ty
35 3 a2
4x_ g 3%’

12x?>+35x—3=0
(12x—-1)(x+3)=0
1

—— 3
=120

25. D Iope of the radius through (0,6) and the center of the circle (3,2) is m =
= — 5. We need the perpendicular slope so m = Z' Therefore our tangent line is

I o|c\

3—
y %x + 6 which becomes 3x — 4y + 24 = 0.
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28.

29.

30.

D The equation of the ellipse is X + L 1. Plug in the height of 10 we get 2 +
576 = 400 ' 576

100 x2
— = -

= LA N IO N 12+/3. But we need to double to get the
400 576 4 4

full width.

2 AY/
The ellipse becomes &2 + &~

64 100

= 1, with center (—3,4) anda = 10,b = 8,c =
2 2
6. To find the directrices of the ellipse, we use y = k + aT -y=4+ % =

. s 50 62
Since we need a positive value, y = 4 + S =3

x2—y?—10x—14y—-24=0->(x—-5)?=(y+7)> >x—-5=y+ 7. Thisis
two lines which is a degenerate hyperbola.

The only way this is possible is in the points lie on the same line.

A L 6k2—22k+20=18k? — 18k +4 > 3k2 +k—4=0 -
3k-1 5-3k

(3k + 4)(k — 1). Solving gives k = —g , 1.

4+
3

c c . 7 10 100 .
e=-—-a=-Sincee=_—,a=—c- a? = Ecz' The latus rectum is equal to

10
2b? 10 100
~——=51.50,51a = 2b? -» 51a = 2(a? — ¢?) - 51 (7c) =2 (—c2 - cz).

49
Simplifying the equation we get %cz - 57%0 = 0. Solving for c we get ¢ = 0, 35, so
¢ = 35and a = 50. Solving for b: b = Va2 — ¢2 = V502 — 352 = /1275 = 5v/51.

Therefore, the area of the ellipse is A = 7(50)(5v51) = 250751,




