3.

- The harmonic mean of three numbers x, y, and z is $\frac{3xyz}{xy+yz+xz}$. So for 6, 15, and 24, the 1. В harmonic mean would be $\frac{3*6*15*24}{6*15+6*24+15*24} = \frac{120}{11}$
- 2. D The geometric mean of a and b is \sqrt{ab} , so the geometric mean of 12 and 42 is $\sqrt{12 * 42} = \sqrt{4 * 3 * 3 * 14} = 6\sqrt{14}$

C
$$2a_{n-1} = 2a_n - 5$$

 $a_n = a_{n-1} + \frac{5}{2}$

Each consecutive term increase by $\frac{3}{2}$

$$a_{n} = a_{1} + (n-1)\frac{5}{2}$$
Using the given information: $a_{1} = a_{2} - \frac{5}{2} = \frac{195}{2}$

$$a_{131} = \frac{195}{2} + (131 - 1)\frac{5}{2}$$

$$a_{131} = \frac{195}{2} + 325 = \frac{845}{2}$$
4. A
$$\prod_{n=1}^{8} \begin{bmatrix} n & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 2 \times 3 \times ... \times 8 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 40320 & 0\\ 0 \end{bmatrix} = \begin{bmatrix} 10320 \\ 0 \end{bmatrix}$$

- The sum of the entries is 40320 + 1 = 40321B $0.\overline{21}_c = 2 * c^{-1} + 2 * c^{-3} + 2 * c^{-5} \dots + 1 * c^{-2} + 1 * c^{-4} + 1 * c^{-6} \dots$ So this 5. becomes two infinite geometric sums with the same common ratio, but different first terms. We can now simplify the sum to $\frac{\frac{2}{c}}{1-\frac{1}{c^2}} + \frac{\frac{1}{c^2}}{1-\frac{1}{c^2}} = \frac{2c+1}{c^2-1} = \frac{25}{143}$. When you solve for c, the two values are $\frac{-14}{25}$ and 12. Because a base can only be positive, the correct answer is 12.
- 6. The common difference in this sequence is 23. Therefore we subtract the first D number from the last number, divide the difference by 23, and add 1 to get the number of terms in the sequence. This becomes $\frac{1408-5}{22} + 1 = 62$.
- 7. The pattern eventual repeats, so it becomes $\sqrt{1 + \sqrt{7 + x}} = x$. Getting rid of the all В the radicals, we get $x^4 - 2x^2 + 1 = 7 + x$. Solving for x, we get x = 2.
- The Least common multiple of 5 and 9 is 45. Any number divisible by 5 and 9, has a 8. В factor of 45. 23(45) = 1035 and 222(45) = 9990

There are 222 - 23 + 1 = 200 valid numbers on the interval.

A +

9. В

9. B

$$\sum_{n=1}^{75} \left(\frac{n^2}{5}\right) = \frac{1}{5} \sum_{n=1}^{75} (n^2)$$
Common Summations $\Rightarrow \sum_{k=1}^{n} (k^2) = \frac{n(n+1)(2n+1)}{6}$

$$\sum_{n=1}^{35} \left(\frac{n^2}{5}\right) = \frac{1}{5} \left[\frac{35(35+1)(2(35)+1)}{6}\right]$$

$$\sum_{n=1}^{35} \left(\frac{n^2}{5}\right) = \frac{7(35+1)(2(35)+1)}{6}$$

$$\sum_{n=1}^{35} \left(\frac{n^2}{5}\right) = 7(6)(71))$$

$$\sum_{n=1}^{35} \left(\frac{n^2}{5}\right) = 42 \times 71 = 2982$$
10. A We can rewrite the expression as $\frac{1}{k} + \frac{B}{k+2}$. So $A(k+2) + B(k) = 1$. Therefore $A = \frac{1}{2}$, and $B = \frac{-1}{2}$. Therefore it becomes $\frac{1}{2} - \frac{1}{2}$. This becomes $\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{4} + \frac{3}{4}$. Eventually this becomes a telescoping series that cancels out except $\frac{1}{2} + \frac{1}{4} + \frac{3}{4}$. Eventually this becomes a telescoping series that cancels out except $\frac{1}{2} + \frac{1}{4} = \frac{3}{4}$.
11. A $\frac{456 + 457}{2} - \frac{241 + 242}{2} = 75035$. This is the answer.
12. C $m = \sum_{n=0}^{101} n! = 1 + 1 + 2 + 6 + 24 + 120 + 720 + \cdots$
n! will be a multiple of 10 for $n > 4$
1 + 1 + 2 + 6 + 4 = 14 \Rightarrow The units digit is 4
13. B Anjaan writes one digit for every number 1-9, two digits for every number 10-99, and three digits for every number 100-409. This becomes $1 * (9 - 1 + 1) + 2 * (99 - 10 + 1) + 3 * (409 - 100 + 1) = 1119$
14. E Consider $\frac{1}{t^{pm}}$ for values of m mod 4 as n ranges from 1 to 100.
1. mn cycles 1, 2, 3, 0 mod 4. So $\frac{1}{t^{pm}}$ scycles $-i, -1, i, i,$ thus sum to 0.
3. mn cycles 2, 0 mod 4. So $\frac{1}{t^{pm}}$ cycles $-i, -1, i, 1$, thus sum to 0.
5. B This is in a repeating form so it becomes $4 - \frac{4}{x} = x$, so it becomes $x^2 - 4x + 4 = 0$, $x = 2$.

16. A She is choosing 3 cards from the deck, so the denominator is 52 C 3. There are 12 face cards, so the number of combinations to choose 3 face cards is 12 C 3. There are 26 red cards, so the number of combinations to choose 3 red cards is 26 (3. But because it says the word "or," we have to take into account the red face cards, which there are 6 of those. So the total combinations to choose 3 red face cards is 6 (3. So the final probability is $\frac{26 (3+12 (3-6 (3)))}{52 (3)} = \frac{28}{221}$

- 17. A If 64a3b75 is divisible by 11, 6 + a + b + 5 (4 + 3 + 7) = 11 + a + b 14 = a + b 3. So the smallest value a + b can be is if the original expression is 0, so a + b = 3. If we apply it to the other number 7 + a + b (6 + 3 + 2) = 7 + a + b 11 = a + b 4 = 3 4 = -1. Therefore the remainder is 1.
- 18. B We can split the expression up into $2\left(\frac{x}{2^x} + \frac{2}{2^x}\right)$. If we look at the first term $\frac{x}{2^{x'}}$, we can write it as $\frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \frac{4}{2^4} \dots = S$. Therefore, $2S = 1 + \frac{2}{2^1} + \frac{3}{2^2} + \frac{4}{2^3} \dots$ So subtracting the two equations, $S = 1 + \frac{1}{2^1} + \frac{1}{2^2} + \frac{1}{2^3} \dots = \frac{1}{1 \frac{1}{2}} = 2$. So two times that becomes 4. Now looking at the second expression in the statement, $\frac{2}{1} + \frac{2}{2^1} + \frac{2}{2^2} + \frac{2}{2^3} \dots = \frac{2}{1 \frac{1}{2}} = 4$. Two times that becomes 8. Therefore, the final sum is 4 + 8 = 12.
- 19. E $(1-i)^2 = -2i$. And $(1+i)^2 = 2i$. So the expression becomes $(-2i)^{50} + (2i)^{50}$. This becomes -2^{51} .
- 20. B This becomes an infinite geometric series. In the first round of flying, the fly flies a net of 2 units to the right, then the next round 1 unit, then 0.5, and so on, so it becomes $\frac{2}{1-\frac{1}{2}} = 4$. The same thing happens for the vertical units, so the total distance from the origin is $\sqrt{4^2 + 4^2} = 4\sqrt{2}$
- 21. B If Devika goes first, the probability of her not winning on the first try and Navya winning on her first try is $\frac{1}{2} * \frac{1}{2}$. The probability of Devika not winning on her second try as well and Navya winning on her second try is $\frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2}$. This becomes an infinite geometric pattern with first term $\frac{1}{4}$ and common ratio $\frac{1}{4}$. So the total series, the probability of Navya winning becomes $\frac{\frac{1}{4}}{1-\frac{1}{2}} = \frac{\frac{1}{4}}{\frac{3}{2}} = \frac{1}{3}$.
- 22. C $1^2 to 3^2$ is 3 numbers with 1 digit each. $4^2 to 9^2$ is 6 numbers with two digits each. $10^2 to 31^2$ is 22 numbers with 3 digits. $32^2 to 50^2$ is 19 numbers with 4 digits each. The total amount of digits becomes 1 * 3 + 2 * 6 + 3 * 22 + 4 * 19 = 3 + 12 + 66 + 76 = 157.
- 23. B Repeating form, so it becomes $\sqrt{6 + y} = y^2$. Squaring both sides, we get $y^2 y 6 = (y + 2)(y 3)$. Since this sum must be positive, the correct answer is 3.
- 24. D If we divide the second term by the first term we get $\frac{9+i}{2+i} = 4 i$. The third term is then (9 + 2i)(4 i) = 38 i. Fourth term is (38 i)(4 i) = 151 42i. The sum of the four terms is 200 40i.
- 25. D Rewriting the terms in the sequence, we have $7^{\frac{1}{8}}$, $7^{\frac{1}{12}}$, $7^{\frac{1}{24}}$. We notice that it can also be written as $7^{\frac{3}{24}}$, $7^{\frac{2}{24}}$, $7^{\frac{1}{24}}$. So the common ratio is $7^{\frac{-1}{24}}$. So the next term in the sequence is $7^{0} = 1$.

- 26. The perfect square numbers from 1 to 6 are 1 and 4. So the probability of rolling a D perfect square is $\frac{1}{3}$. The prime numbers from 1 to 6 are 2, 3, 5. So the probability of rolling a prime number is $\frac{1}{2}$. So the expected value would be $\frac{1}{3} * 20 - \frac{1}{2} * 10 = \frac{5}{3}$. This would be for one roll, so for ten rolls, the expected value is $\frac{5}{2}$
- $4x^3 + 6x^2 bx 7.5$ shows that the sum of the roots is $\frac{-3}{2}$ and $\frac{-3}{8}$. If we notice 27. B they're in arithmetic progression, we see that the three roots would be $\frac{-5}{2}$, $\frac{-1}{2}$, $\frac{3}{2}$. The middle root would then be $\frac{-1}{2}$.
- Let $a_{i+1} a_i = d$. Then $\frac{1}{a_i a_{i+1}} = \frac{a_{i+1} a_i}{da_i a_{i+1}} = \frac{1}{d} \left(\frac{1}{a_i} \frac{1}{a_{i+1}} \right)$. The sum therefore telescopes and is equal to $\frac{1}{d} \left(\frac{1}{a_1} \frac{1}{a_{177}} \right) = \frac{1}{d} \left(\frac{a_{177} a_1}{a_1 a_{177}} \right) = \frac{1}{d} \left(\frac{176d}{a_1 a_{177}} \right) = \frac{176}{3 \cdot 2024} = \frac{2}{69}$. The formula for the sum of squares from 1 to n is $\frac{n(n+1)(2n+1)}{6} = \frac{(2022)(2023)(4045)}{6}$ when you prime factorize it becomes $5 * 7 * 17^2 * 337 * 809$. So the number of 28. E
- 29. C factors is found by adding 1 to the exponents and multiplying them together, making 2 * 2 * 3 * 2 * 2 = 48.

If we look at the series, it is $1 * \frac{2}{3} + 2 * \left(\frac{2}{3}\right)^2 + 3 * \left(\frac{2}{3}\right)^3 + 4 * \left(\frac{2}{3}\right)^4 = S$. $\frac{3}{2}S = 1 + S$ 30. C $2*\left(\frac{2}{3}\right)^{1}+3*\left(\frac{2}{3}\right)^{2}+4*\left(\frac{2}{3}\right)^{3}$... If we subtract the two equations, we get $\frac{s}{2}=1+$ $\left(\frac{2}{3}\right) + \left(\frac{2}{3}\right)^2 \dots = \frac{1}{1 - \frac{2}{3}} = 3.$ So S = 6.