1 Answers

1. A
2. A
3. C
4. B
5. D
6. A
7. C
8. B
9. B
10. E
11. B
12. A
13. B
14. B
15. B
16. B
17. D
18. A
19. D
20. A
21. C
22. A
23. C
24. D
25. E
26. C
27. D
28. C
29. A
30. D
2 Solutions

1. Compute \(\int_0^\pi \sin x \cos x \, dx \).

 Solution. Let \(u = \sin x, du = \cos x \, dx \) and the integral in \(x \) becomes an integral in \(u \) from 0 to 0 of \(u \, du \), which is 0. (A)

2. Compute \(\int_0^2 \frac{x}{2+x} \, dx \).

 Solution. Note that we can divide the fraction to yield
 \[
 \int_0^2 \frac{x}{2+x} \, dx = \int_0^2 \left(1 - \frac{2}{x+2}\right) \, dx = x - 2 \ln(x+2) \bigg|_0^2 = 2 - 2 \ln 4 + 2 \ln 2 = 2 - \ln 4.
 \]
 So the answer is (A).

3. Compute \(\int_0^{4\pi} |\sin 2x| \, dx \).

 Solution. Note that
 \[
 \int_0^{\pi/2} \sin 2x \, dx = -\frac{1}{2} \cos 2x \bigg|_0^{\pi/2} = \frac{1}{2} + \frac{1}{2} = 1.
 \]
 The interval from 0 to \(4\pi \) can be broken down into 8 intervals of length \(\pi/2 \) where all values, and therefore all areas, are positive. Because \(\sin 2x \) is periodic, the value is \(1 \cdot 8 = 8 \). (C)

4. Using a trapezoidal sum on 6 equal subintervals, estimate the value of \(\int_2^{20} (4x+1) \, dx \).

 Solution. A trapezoidal sum is exact for linear functions, so we can evaluate the integral directly to get \(2 \cdot 20^2 + 20 - 2 \cdot 2^2 - 2 = 810 \). (B)

5. What is the total area bounded by the graph of \(f(x) = x^3 \) and its inverse \(f^{-1}(x) \)?

 Solution. Two separate regions (between \(-1\) and 0, and 0 and 1) are bounded, and by symmetry with respect to \(y = x \), the areas of each region are equal. The total bounded area is thus
 \[
 2 \int_0^1 (x^{1/3} - x^3) \, dx = 2 \left(\frac{3}{4} x^{4/3} - \frac{1}{4} x^4\right) \bigg|_0^1 = 2 \left(\frac{3}{4} - \frac{1}{4}\right) = 1.
 \]
 So the answer is (D).

6. Compute \(\lim_{n \to \infty} \sum_{i=0}^{n} \frac{i}{i^2 + n^2} \).

 Solution. Dividing each term by \(n^2 \), we can rewrite the summand as
 \[
 \frac{i/n^2}{i^2/n^2 + n^2/n^2} = \frac{i/n \cdot 1/n}{(i/n)^2 + 1} = \frac{1}{n} \cdot \frac{i/n}{(i/n)^2 + 1}.
 \]
By the Riemann definition of an integral, this sum is equal to
\[
\int_{0}^{1} \frac{x}{x^2 + 1} \, dx = \left. \frac{1}{2} \ln(x^2 + 1) \right|_{0}^{1} = \frac{\ln 2}{2}.
\]
So the answer is (A).

7. What is the length of the polar curve \(r = \theta^2 \) from \(\theta = 0 \) to \(\theta = 2 \)?

Solution. By the polar arc length definition, we integrate the square root of \(r^2 + (r')^2 \). Thus, we have that the length of this curve is
\[
\int_{0}^{2} \sqrt{\theta^4 + 4\theta^2} \, d\theta = \int_{0}^{2} \theta \sqrt{\theta^2 + 4} \, d\theta = \left. \frac{1}{3} (\theta^2 + 4)^{3/2} \right|_{0}^{2} = \frac{8^{3/2} - 4^{3/2}}{3} = \frac{16\sqrt{2} - 8}{3}.
\]
So the answer is (C).

8. If \(g(x) \) is an even function and \(\int_{\mathbb{R}} g(x) \, dx = 4 \) then compute the value of \(\int_{0}^{\infty} g(x) \, dx \).

Solution. Because the integral in question is over all positive real numbers and our function is even, this is simply equal to \(4/2 = 2 \). (B)

9. \(e^x (\cos x - \sin x) \) is the derivative of which of the following?

Solution. The given function is the derivative of \(e^x \cos x \) through the product rule. (B)

10. Compute \(\int_{0}^{\infty} \sum_{n=0}^{\infty} (-x^2)^n \, dx \).

Solution. The inner summand evaluates to \(1/(1 + x^2) \) by the sum of an infinite geometric series, provided \(0 < x < 1 \). But because \(x \) goes from 0 to \(\infty \), this integral diverges. (E)

11. The function \(f(x) = kx(1 - x)^3 \) defines a probability density function on \([0, 1]\) for some real \(k \). Compute \(k \).

Solution. To solve for \(k \), we note that \(\int_{0}^{1} kx(1 - x)^3 \, dx = 1 \) in order for this to be a probability distribution. Hence, using integration by parts with \(u = x \) and \(dv = (1 - x)^3 \), we obtain
\[
\int_{0}^{1} kx(1 - x)^3 \, dx = 1
\]
\[
- \frac{kx}{4} (1 - x)^4 \bigg|_{0}^{1} - \frac{k}{20} (1 - x)^5 \bigg|_{0}^{1} = 1
\]
\[
k \frac{1}{20} = 1,
\]
so \(k = 20 \). (B)

12. Let \(R \) be the region bounded by the parametric equations \(x(t) = 2t \) and \(y(t) = t/(t^2 + 1) \) and the \(x \) axis over the interval \(t \in [0, 1] \). What is the area of \(R \)?
The area is given by $\int y \, dx$, which becomes $\int_0^1 2t/(t^2 + 1) \, dt$ by plugging in $y(t)$ and computing $dx = 2 \, dt$. This integral is easily solved through u-substitution and is equal to $\ln 2$. (A)

13. Compute $\int_0^\infty \frac{x^2}{(x^2 + 1)^2} \, dx$.

Solution. Let $x = \tan \theta$ so that $dx = \sec^2 \theta \, d\theta$. Then the integral becomes

$$\int_0^{\pi/2} \sin^2 \theta \, d\theta = \int_0^{\pi/2} \frac{1}{2} (1 - \cos 2\theta) \, d\theta = \frac{1}{4} (2\theta - \sin 2\theta) \bigg|_0^{\pi/2} = \frac{\pi}{4}.$$

So the answer is (B).

14. Compute $\int_1^\infty \frac{x^2 \ln^2 x}{x^2} \, dx$.

Solution. Let $u = \ln x$ so that $e^u \, du = dx$. The integral then becomes, using integration by parts,

$$\int_0^\infty u^2 e^{-u} \, du = \lim_{b \to \infty} -(u^2 + 2u + 2)e^{-u} \bigg|_0^b = 2.$$

So the answer is (B).

15. Compute $\int_0^{2\pi} \sin(\sin x - x) \, dx$.

Solution. Use sine addition on the integrand to rewrite it as $\sin(\sin x) \cos x - \cos(\sin x) \sin x$. Now we integrate each term. The integral of $\sin(\sin x) \cos x$ over $[0, 2\pi]$ is equal to 0, which can be seen through the u-substitution $u = \sin x$:

$$\int_0^{2\pi} \sin(\sin x) \cos x \, dx = -\cos(\sin x) \bigg|_0^{2\pi} = -\cos(0) + \cos(2\pi) = 0.$$

As for the second term, we use the u-substitution $x = 2\pi - u$ and the identity $\sin(2\pi - u) = -\sin u$:

$$\int_0^{2\pi} -\cos(\sin x) \sin x \, dx = \int_0^0 \cos(\sin(2\pi - u)) \sin(2\pi - u) \, du$$
$$= -\int_0^{2\pi} \cos(-\sin u) \sin u \, du = \int_0^{2\pi} \cos(\sin u) \sin u \, du.$$

Thus, this transformation takes $\cos(\sin x) \sin(x)$ to $-\cos(\sin x) \sin x$, so this integral must also be 0. Therefore, the entire integral is 0. (B)

16. Compute $\int_0^1 x \ln(1 - x) \, dx$.

Solution. We can write (on the interval $(0, 1)$)

$$\ln(1 - x) = -\sum_{i=1}^\infty \frac{x^i}{i}, \quad \text{so that} \quad x \ln(1 - x) = -\sum_{i=1}^\infty \frac{x^{i+1}}{i}.$$
Therefore, we can integrate the series:

\[
\int_0^1 x \ln(1-x) \, dx = - \int_0^1 \sum_{i=1}^{\infty} \frac{x^{i+1}}{i} \, dx = - \left(\sum_{i=1}^{\infty} \frac{x^{i+2}}{i(i+2)} \right) \bigg|_0^1 = - \sum_{i=1}^{\infty} \frac{1}{i(i+2)} = - \sum_{i=1}^{\infty} \frac{1}{2} \left(\frac{1}{i} - \frac{1}{i+2} \right)
\]

This series telescopes, leaving \(- (1/2)(1 + 1/2) = -3/4\). (B)

17. Compute \(\int_0^4 (x - 7)(x - 2)^5 \, dx\).

Solution. Let \(u = x - 2\). The integral becomes

\[
\int_{-2}^{2} (u - 5)u^5 \, du = \int_{-2}^{2} (u^6 - 5u^5) \, du.
\]

Because the integral of the odd function \(-5u^5\) is 0 over \([-2, 2]\), the integral is simply \(2 \cdot 2^7 / 7 = 2 \cdot 128 / 7 = 256 / 7\). (D)

18. Compute \(\int_0^1 \frac{1}{1 + x + x^2} \, dx\).

Solution. We can complete the square on the integrand to rewrite it as

\[
\frac{1}{(x + 1/2)^2 + 3/4} = \frac{4/3}{((2x + 1)/\sqrt{3})^2 + 1}.
\]

Let \(u = (2x + 1)/\sqrt{3}\). Then \(du = 2/\sqrt{3} \, dx\) to get that this integral is

\[
\frac{4\sqrt{3}}{6} \int_{1/\sqrt{3}}^{\sqrt{3}} \frac{1}{1 + u^2} \, du = \frac{2\sqrt{3}}{3} \arctan u \bigg|_{1/\sqrt{3}}^{\sqrt{3}} = \frac{2\sqrt{3}}{3} \left(\frac{\pi}{3} - \frac{\pi}{6} \right) = \frac{\pi\sqrt{3}}{9}.
\]

So the answer is (A).

19. Let \(f(x)\) be a cubic polynomial with leading coefficient 1 and a root at \(x = 0\). If \(\int_0^1 f(x) \, dx = 1\) then what is the sum of all possible values of \(f(\frac{2}{3})\)?

Solution. Let \(f(x) = x^3 + mx^2 + nx\) for real numbers \(m\) and \(n\). We have from the integral equation that \(1/4 + m/3 + n/2 = 1\), which implies \(m/3 + n/2 = 3/4\). We are asked to find the possible values of \(8/27 + 4m/9 + 2n/3\). This expression is equal to \(8/27 + (4/3)(m/3 + n/2) = 8/27 + (4/3)(3/4) = 8/27 + 1 = 35/27\). (D)

20. Compute \(\int_0^{\pi/4} \ln(1 + \tan x) \, dx\).

Solution. Let \(x = \pi/4 - u\), so that \(dx = -du\). Then \(\tan(\pi/4 - u) = (1 - \tan u)/(1 + \tan u)\) by the tangent addition identity. Thus, the integral after this substitution becomes

\[
\int_{\pi/4}^0 -\ln \left(\frac{1 - \tan u}{1 + \tan u} \right) \, du = \int_0^{\pi/4} \ln \left(\frac{2}{1 + \tan u} \right) \, du = \int_0^{\pi/4} (\ln 2 - \ln(1 + \tan u)) \, du.
\]
Therefore, we conclude that
\[
\int_0^{\pi/4} \ln(1 + \tan x) \, dx = \int_0^{\pi/4} (\ln 2 - \ln(1 + \tan x)) \, dx = \int_0^{\pi/4} \ln 2 \, dx - \int_0^{\pi/4} \ln(1 + \tan x) \, dx.
\]
Let the value of the original integral be \(I \) and add it to both sides of the above equation. Then we have that \(2I = \int_0^{\pi/4} \ln 2 \, dx \) so \(I = (\pi \ln 2)/8 \). (A)

21. If \(\lim_{x \to 0} \frac{f(t)}{x^2} = 4 \), then what is the value of \(f(0) + f'(0) \)?

Solution. Applying L'Hôpital's rule we see that this limit becomes \(\lim_{x \to 0} \frac{f(x)}{2x} \). If this limit is to equal a finite value (which it is), then we must have that \(f(0) = 0 \). We thus can apply L'Hôpital again to get that \(\lim_{x \to 0} \frac{f'(x)}{x} = 4 \), so \(f'(0) = 8 \) and the answer is 8. (C)

22. Compute \(\int_{1/2}^{2} \frac{x^4 - 1}{x^5 + x} \, dx \).

Solution. The bounds suggest that the substitution \(x = 1/u \) and \(dx = -1/u^2 \, du \) is a good try. When this is done, the integral becomes
\[
\int_{1/2}^{2} \frac{1/u^4 - 1}{1/u^5 + 1/u} \cdot \frac{-1}{u^2} \, du = \int_{1/2}^{2} \frac{1/u^4 - 1}{1/u^5 + u} \, du = \int_{1/2}^{2} \frac{1 - u^4}{u + u^5} \, du.
\]
Therefore we conclude that
\[
\int_{1/2}^{2} \frac{x^4 - 1}{x^5 + x} \, dx = \int_{1/2}^{2} -\frac{x^4 - 1}{x^5 + x} \, dx.
\]
Because these two integrals are but the negations of each other, then the value of this integral must be 0. (A)

23. What is the smallest possible real value \(n \) for which \(\int_0^1 \frac{\arctan x}{x^n} \, dx \) diverges?

Solution. On the interval \((0,1)\), the most significant term in the Maclaurin expansion of \(\arctan x \) is \(x \), as the higher order terms will be small when compared. \(\int_0^1 x^p \, dx \) blows up when \(p \geq 1 \) and converges to a real value otherwise. Thus, because \(\arctan x \) has most significant term \(x \), we must have \(n \geq 2 \) for this integral to diverge. Thus, the smallest possible value that results in divergence is 2. (C)

24. Compute \(\int_0^\infty \left(\frac{x + 1}{x^2 + 1} \right)^2 e^{-x} \, dx \).

Solution. The denominator suggests that this integrand could be the result of a derivative taken of a function with denominator \(x^2 + 1 \). If the numerator is \(f(x) \), then by the quotient rule, we must have \((x^2 + 1)f'(x) - 2xf(x) = (x + 1)^2 e^{-x} \). Upon inspection, we see that \(f(x) = -e^{-x} \) is indeed a solution. Thus, the integral becomes
\[
\lim_{b \to \infty} \left. -e^{-x} \right|_0^b = \lim_{b \to \infty} \left(-e^{-b} - \frac{e^{-b}}{b^2 + 1} + 1 \right) = 1.
\]
So the answer is (D).
25. Compute \(\int_0^1 x \left\lfloor \frac{1}{x} \right\rfloor \, dx \) where \(\lfloor x \rfloor \) is the greatest integer less than or equal to \(x \).

\textbf{Solution.} We can rewrite this integral as

\[\sum_{n=1}^{\infty} \int_{1/(n+1)}^{1/n} nx \, dx \]

by considering the separate values for which \(\lfloor 1/x \rfloor \) is constant. Evaluating, we get this is

\[\sum_{n=1}^{\infty} \int_{1/(n+1)}^{1/n} nx \, dx = \sum_{n=1}^{\infty} \left(\frac{1}{2n} - \frac{n}{2(n+1)^2} \right) = \sum_{n=1}^{\infty} \left(\frac{1}{2n} - \frac{1}{2(n+1)} + \frac{1}{2(n+1)^2} \right) \cdot \]

The sum of the first two terms can be isolated and summed as a telescoping series with sum \(1/2 \). The last term is half the sum of the reciprocals of the squares of all natural numbers but 1, which is \((\pi^2/6 - 1)/2 \). The sum of these is \(1/2 + (\pi^2/6 - 1)/2 = 1/2 + \pi^2/12 - 1/2 = \pi^2/12 \). (E)

26. Evaluate \(\int_0^{\pi/2} \frac{1}{1 + \tan^{2022}(x)} \, dx \).

\textbf{Solution.} Recall that \(\tan(\pi/2 - \theta) = \cot(\theta) = 1/\tan(\theta) \). We use the substitution \(u = \pi/2 - x \) and we get

\[I = \int_0^{\pi/2} \frac{1}{1 + \tan^{2022}(x)} \, dx = \int_0^{\pi/2} \frac{1}{1 + \tan^{2022}(\pi/2 - u)} \, du \]

\[= \int_0^{\pi/2} \frac{1}{1 + \tan^{-2022}(x)} \, dx = \int_0^{\pi/2} \frac{\tan^{2022}(x)}{1 + \tan^{2022}(x)} \, dx. \]

Adding the first and last integral gives \(2I = \int_0^{\pi/2} 1 \, dx = \pi/2 \) so the final answer is \(\pi/4 \). (C)

27. Let \(I = \int_6^{18} \arcsin\left(\sqrt{x/(x+6)}\right) \, dx \). Then \(I \) can be written in the form \(a\pi - b\sqrt{c} + d \), where \(a, b, c, d \in \mathbb{N} \) and \(c \) is squarefree (i.e. not divisible by the square of any prime). Find \(a+b+c+d \).

\textbf{Solution.} Note that

\[\int \arcsin\left(\sqrt{\frac{x}{x+6}}\right) \, dx = \int \arctan\left(\sqrt{\frac{x}{6}}\right) \, dx. \]

Using integration by parts, let \(u = \arctan(\sqrt{x/6}) \) and \(dv = dx \). Then \(v \) is actually \(x \) plus a constant; we choose a helpful constant. Let \(v = x + 6 \) and

\[du = \frac{1}{1 + x/6} \cdot \frac{1}{2\sqrt{x/6}} \cdot \frac{1}{6} = \frac{\sqrt{6}}{2\sqrt{x}(x+6)}. \]
Hence, we have
\[\int \arctan \left(\sqrt{\frac{x}{6}} \right) \, dx = (x + 6) \arctan \left(\sqrt{\frac{x}{6}} \right) - \int \frac{(x + 6)\sqrt{6}}{2\sqrt{x}(x + 6)} \, dx. \]
\[= (x + 6) \arctan \left(\sqrt{\frac{x}{6}} \right) - \frac{\sqrt{6}}{2} \int \frac{1}{\sqrt{x}} \, dx \]
\[= (x + 6) \arctan \left(\sqrt{\frac{x}{6}} \right) - \frac{\sqrt{6}}{2} \cdot 2\sqrt{x} + C \]
\[= (x + 6) \arctan \left(\sqrt{\frac{x}{6}} \right) - \sqrt{6}x + C. \]

Plugging in the bounds then gives \(5\pi - 6\sqrt{3} + 6 \). This gives \(a + b + c + d = 5 + 6 + 3 + 6 = 20 \).

(D)

28. Evaluate \(\int_{0}^{\pi/2} \frac{\sin(2021x)}{\sin(x)} \, dx \).

Solution. Let \(I_n = \int_{0}^{\pi/2} \frac{\sin((2n + 1)x)}{\sin(x)} \, dx \). Now, consider the difference \(I_n - I_{n-1} \):
\[I_n - I_{n-1} = \int_{0}^{\pi/2} \frac{\sin((2n + 1)x) - \sin((2n - 1)x)}{\sin(x)} \, dx. \]
We use an identity to rewrite the difference of the sines. We have
\[\sin((2n + 1)x) - \sin((2n - 1)x) = \sin(2nx)\cos(x) + \sin(x)\cos(2nx) - (\sin(2nx)\cos(x) - \sin(x)\cos(2nx)) = 2\cos(2nx)\sin(x). \]
Thus,
\[I_n - I_{n-1} = \int_{0}^{\pi/2} \frac{2\cos(2nx)\sin(x)}{\sin(x)} \, dx = \int_{0}^{\pi/2} 2\cos(2nx) \, dx = 0. \]
Therefore, we see that \(I_n \) has the same value for every \(n \). Hence, we calculate \(I_0 \):
\[I_{1010} = I_0 = \int_{0}^{\pi/2} \frac{\sin(x)}{\sin(x)} \, dx = \int_{0}^{\pi/2} 1 \, dx = \frac{\pi}{2}. \]
So the answer is (C).

29. Approximate \(\int_{0}^{1} (8x^3 - 3x^2 + 2022x - 1000) \, dx \) using Simpson’s rule with \(n = 2022 \) subdivisions.

Solution. Simpsons is exact for cubics, giving
\[\int_{0}^{1} (8x^3 - 3x^2 + 2022x - 1000) \, dx = 2x^4 - x^3 + 1011x^2 - 1000x \bigg|_{0}^{1} = 12. \]
So the answer is (A).
30. Compute $\int_0^1 \int_0^1 \frac{1}{1-xy} \, dy \, dx$.

Solution. Because we are within the domain, we can write the integrand as a sum of geometric series:

$$\int_0^1 \int_0^1 \sum_{n=0}^{\infty} (xy)^n \, dy \, dx = \sum_{n=0}^{\infty} \frac{1}{(n+1)^2}$$

after evaluating each separate layer of integrals (it is a symmetric region). This is the sum of the reciprocals of the squares of the natural numbers, which is $\frac{\pi^2}{6}$. (D)