Directions: Unless otherwise stated, the domains and ranges of all functions are the **complex numbers**. Use the principal branch for the logarithms of complex numbers and for inverse trigonometric functions.

We adopt *i* as the imaginary unit: $i^2 = -1$. For a complex number z = a + bi with real *a* and *b*, the notation $\Re(z) = a$, $\Im(z) = b$, $|z| = \sqrt{a^2 + b^2}$, $\arg(z) \in (-\pi, \pi]$ will denote the principal argument of *z*, and $\bar{z} = a - bi$: the complex conjugate of *z*. For a complex-valued matrix *A*, the notation A^* will denote the conjugate transpose of *A* such that $a_{kl}^* = \bar{a}_{lk}$ (apply the complex conjugate to all elements of A^T). For an $n \times n$ matrix *M*, $\lambda(M)$ is taken to mean the set of eigenvalues of *M* with (unordered) elements $\lambda_1, \lambda_2, \ldots, \lambda_n$. The symbols \mathbb{Z} , \mathbb{R} , and \mathbb{C} represent the integers, real numbers, and complex numbers, respectively. By $\sqrt[n]{z}$, we refer to the principal *n*-th root of *z* (e.g., $\sqrt[5]{-32} = 2e^{\pi i/5}$). The following identity will be useful throughout this test: $e^{ix} = \cos(x) + i\sin(x)$.

Select (E) NOTA if none of the other answer choices for the question are correct.

- **1.** The quadratic polynomial p(z) has real coefficients. Suppose p(1) = 10 and p(2 i) = 0. Find p(2).
 - (A) 1 (B) 5 (C) 10 (D) 17 (E) NOTA

2. Let
$$A = \begin{bmatrix} 1 - i & 2i \\ 3 - 2i & 2 + i \end{bmatrix}$$
. Compute det(A).
(A) $-1 - 7i$ (B) $-1 + 5i$ (C) $7 - 7i$ (D) $7 + 5i$ (E) NOTA

- **3.** Using the matrix *A* from the previous question, compute $det(A^*)$.
 - (A) -1-5i (B) -1+7i (C) 7-5i (D) 7+7i (E) NOTA

4. If
$$|z + \bar{z}| = 6$$
 and $|z - \bar{z}| = 8$, then what is $|z^2|$?
(A) 100 (B) 64 (C) 36 (D) 25 (E) NOTA

5. For a square matrix *A*, a non-zero vector \vec{v} is an eigenvector of *A* with associated eigenvalue λ if $A\vec{v} = \lambda\vec{v}$. Eigenvalues then, are the solutions to the equation $\det(\lambda I - A) = 0$, where *I* is the appropriately sized identity matrix. Let $A = \begin{bmatrix} 1-2i & 4\\ 1-i & 3+2i \end{bmatrix}$. If $\lambda(A) = \{\lambda_1, \lambda_2\}$ and $|\lambda_1| > |\lambda_2|$, find $|2\lambda_1 - \lambda_2|$.

(A) 1 **(B)** 3 **(C)** 5 **(D)** 7 **(E)** NOTA

6. Using the matrix *A* from the previous question, suppose $\vec{v}_1 = \begin{bmatrix} a \\ b \end{bmatrix}$ is an eigenvector associated to λ_1 (as defined in the previous question). Calculate $\frac{b}{a}$.

(A)
$$\frac{1+i}{2}$$
 (B) $\frac{1-i}{2}$ (C) $1+i$ (D) $1-i$ (E) NOTA

7. Suppose *z* is such that $\arg(z+2-2i) = \frac{\pi}{12}$. Find the smallest possible value of $|z|^2$.

(A) 0 (B) 0 (C) 24 (D) 52 (E) NO12	(A) 6	(B) 8	(C) 24	(D) 32	(E) NOTA
--	--------------	--------------	---------------	---------------	----------

- **8.** For complex arguments, the sine and cosine functions can take values outside the normal range of [-1, 1]. Which of the following is equal to sin(z)?
 - (A) $\frac{e^{iz} + e^{-iz}}{2}$ (B) $\frac{e^{iz} e^{-iz}}{2}$ (C) $\frac{e^{iz} + e^{-iz}}{2i}$ (D) $\frac{e^{iz} e^{-iz}}{2i}$ (E) NOTA
- **9.** For *z* to satisfy $\cos(z) = 2$, which of the following must be true? Note: $k \in \mathbb{Z}$
 - (A) $\Re \mathfrak{e}(z) = 0$ (B) $\Re \mathfrak{e}(z) = (2k+1)\pi$ (C) $|\Im \mathfrak{m}(z)| = \ln(2+\sqrt{3})$ (E) NOTA (D) $|\Im \mathfrak{m}(z)| = 2k\pi + \ln(2+\sqrt{3})$
- **10.** A matrix *A* is Hermitian if $A^* = A$. Suppose *A* is an $n \times n$ Hermitian matrix. Which of the following is not true?

(A) A has real diagonal entries.	(C) A has only real eigenvalues.	(E) NOTA
$(B) AA^* = A^*A$	(D) $det(A) = det(A^*)$	

- 11. The locus of points z in the complex plane which satisfy |z + 6i| + |z 8| = 26 forms a closed curve C. Find the area of the region enclosed by C.
 - (A) 156π (B) 288π (C) 312π (D) 360π (E) NOTA

12. The inner product is the extension of the dot product to complex-valued vectors. For two vectors $\vec{u}, \vec{v} \in \mathbb{C}^n$, the inner product is defined as $\langle \vec{u}, \vec{v} \rangle = \sum_{k=1}^n u_k \bar{v}_k = \vec{v}^* \vec{u}$. The vectors \vec{u} and \vec{v} are orthogonal, then, if $\langle \vec{u}, \vec{v} \rangle = 0$. Suppose $\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 2 - i \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2 - 4i \\ 1 + 3i \\ z \end{bmatrix}$, for some complex number z. If \vec{u} and \vec{v} are orthogonal, find $|z|^2$. (A) 13 (B) 17 (C) 20 (D) 25 (E) NOTA

- **13.** A square matrix *A* is unitary if $AA^* = I$, where *I* is the appropriately sized identity matrix. Suppose *A* is an $n \times n$ unitary matrix. Which of the following is not necessarily true?
 - (A) There exists a positive integer k such that $A^k = I$, where I is the $n \times n$ identity matrix.
 - (B) If \vec{v}_1 and \vec{v}_2 are eigenvectors of A corresponding to different eigenvalues, then \vec{v}_1 and \vec{v}_2 are orthogonal.
 - (C) The magnitude of the trace of *A* is at most *n*.
 - **(D)** For all positive integers k, A^k is unitary.
 - (E) NOTA
- **14.** Which of the following is equal to $\arg(-8 + 15i)$?

(A)
$$\arctan\left(-\frac{8}{15}\right)$$
 (C) $\frac{\pi}{2} + \arccos\left(\frac{8}{17}\right)$ (E) NOTA
(B) $-\pi - \arcsin\left(\frac{15}{17}\right)$ (D) $\pi + \operatorname{arccot}\left(-\frac{15}{8}\right)$

- **15.** For complex z = x + yi with real *x* and *y*, the value *z* can be represented by the matrix $Z = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$. Which of the following statements is not true?
 - (A) If |z| = 1, then *Z* is a rotation matrix.

(B)
$$\lambda(Z) = \{z, \overline{z}\}$$

(C) det(Z) = $|z|$
(D) $\begin{bmatrix} 1\\ i \end{bmatrix}$ is an eigenvector for all such matrices Z .
(E) NOTA

- **16.** Let *S* be the set of complex numbers *w* for which tan(z) = w has no solution. If s_1 and s_2 are elements of *S*, then find the largest possible value of $|s_1 s_2|$.
 - (A) 0 (C) 2 (E) NOTA (B) 1 (D) $|s_1 - s_2|$ is unbounded
- **17.** A 2 \times 2 matrix contains the numbers 1, *i*, -1, and -*i*, in some order. Find the probability that the matrix is invertible.
 - (A) 0 (B) $\frac{1}{6}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$ (E) NOTA

18. Find the number of distinct values of $0 \le z < 2\pi$ such that *z* is a solution to at least one of $z^{20} = 1$ or $z^{25} = 1$.

(A) 40 **(B)** 45 **(C)** 100 **(D)** 500 **(E)** NOTA

19. Using the fact that $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$, evaluate det $\left(\sum_{n=0}^{\infty} \frac{1}{n!} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}^n\right)$. Hint: Use question 15. **(A)** 1 **(B)** e **(C)** 3 **(D)** 3e **(E)** NOTA

- **20.** If $\sum_{n=0}^{2025} ni^n = a + bi$ for real *a* and *b*, find a + b. **(A)** -2025 **(B)** -1 **(C)** 1 **(D)** 2025 **(E)** NOTA
- **21.** Ramanujan's constant, $\mathcal{R} = e^{\pi\sqrt{163}}$, is approximately equal to 262537412640768743.99999999999925. Determine which quadrant of the complex plane the complex number $e^{\mathcal{R}i\pi}$ lies in.
 - (A) I (B) II (C) III (D) IV (E) NOTA

Use the following information to answer questions 22 through 24:

The limit of a complex-valued function f at point c is defined as the unique value L, if it exists, such that for all real $\epsilon > 0$ there exists real $\delta > 0$ such that $|f(z) - L| < \epsilon$ for all $z : 0 < |z - c| < \delta$. This relation is denoted as $L = \lim_{z \to c} f(z)$. We say f is continuous at c if $f(c) = \lim_{z \to c} f(z)$, provided both values exist.

22. Let
$$f(z) = \frac{z^2 + 1}{z - i}$$
. Find $\lim_{z \to i} f(z)$.
(A) 0 (B) *i* (C) 2*i* (D) Does not exist (E) NOTA

23. Let
$$f(z) = \frac{z^2 + 1}{z - i}$$
. If $L = \lim_{z \to i} f(z)$ and $\epsilon = \frac{1}{10}$, find the largest value of δ for which $|f(z) - L| < \epsilon$ for all $|z - i| < \delta$.
(A) 0.01 **(B)** 0.05 **(C)** 0.1 **(D)** 0.2 **(E)** NOTA

- **24.** A function f(z) is continuous over a set *S* if *f* is continuous at *c* for all $c \in S$. Which of the following functions is continuous over \mathbb{R} , but not over \mathbb{C} ? Remember, the domains and ranges of all functions are \mathbb{C} , excluding where *f* is undefined. This means you should take all limits using the provided definition, even if $c \in \mathbb{R}$.
 - (A) $f(z) = \sqrt[3]{z}$ (C) $f(z) = \sin^2(z)$ (E) NOTA (B) $f(z) = \tan(z)$ (D) $f(z) = \frac{1}{2 + \sin(z)}$

25. Let $A = \begin{bmatrix} 1-2i & 4\\ 1-i & 3+2i \end{bmatrix}$. There exists a unique complex number w and finite, non-zero, complex-valued vector \vec{u} such that $\lim_{n \to \infty} \frac{A^n}{w^n} \begin{bmatrix} 1+i\\ 1-i \end{bmatrix} = \vec{u}$. For the limit of a sequence of vectors, take the limit of the sequences of components. If $\vec{u} = \begin{bmatrix} a\\ b \end{bmatrix}$, compute $|a + b + w|^2$. (A) 2 (B) 5 (C) 8 (D) 10 (E) NOTA

- **26.** Determine which quadrant of the complex plane the complex number e^{i^t} lies in.
 - (A) I (B) II (C) III (D) IV (E) NOTA

27. The locus of points *z* in the complex plane for which $|z - 2025 - 2025i| = \frac{|\Re \mathfrak{e}(z)|}{2025} \times |2025 - \tan(\arg(z))|$ is in what shape?

(A) Ellipse(B) Hyperbola(C) Parabola(D) Two lines(E) NOTA

28. The largest possible value of $|1 + z|^2$, for $z \in \mathbb{C}$ such that $|1 + z^2| \le \sqrt{3}$, can be written as $m + \sqrt{n}$, for positive integers m and n. Find m + n.

(A) 5 (B) 6 (C) 7 (D) 8	(E) NOTA
-------------------------	----------

29. Which of the following is equivalent to $\sum_{n=0}^{90} \sum_{m=0}^{n} \sin((m+n)^{\circ})$? Hint: this is a complex numbers test.

(A)
$$\frac{2\cot(1^{\circ}) + 2\cot(0.5^{\circ}) + \cot^{2}(0.5^{\circ})}{4}$$

(B)
$$\frac{2\csc(1^{\circ}) + 2\cot(0.5^{\circ}) + \cot^{2}(0.5^{\circ})}{4}$$

(C)
$$\frac{2\cot(1^{\circ}) + 2\cot(0.5^{\circ}) + \csc^{2}(0.5^{\circ})}{4}$$

(D)
$$\frac{2\csc(1^{\circ}) + 2\cot(0.5^{\circ}) + \csc^{2}(0.5^{\circ})}{4}$$

(E) NOTA

30. Evaluate $\sum_{k=1}^{\infty} \Re \left(\ln \left(1 + \frac{i^{2k+1}}{k} \right) \right)$. You may find the following information useful:

For positive integers n, $\Gamma(n) = (n-1)!$. For complex numbers $z \notin \mathbb{Z}_{\leq 1}$, $\Gamma(z) = \frac{1}{z} \prod_{n=1}^{\infty} \frac{\left(1 + \frac{1}{n}\right)^z}{1 + \frac{z}{n}} = (z-1)\Gamma(z-1)$, and if z is not an integer, $\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin(\pi z)}$.

(A)
$$\frac{\ln(e^{2\pi}-1) - \ln(2\pi) - \pi}{2}$$
 (C) $\ln(e^{2\pi}-1) - \ln(\pi)$ (E) NOTA
(B) $\frac{\ln(e^{2\pi}+1) - \ln(2\pi) - \pi}{2}$ (D) $\ln(e^{2\pi}+1) - \ln(\pi)$