Important Instructions For This Test: Throughout this test, ∂V denotes the boundary of V when in integration bounds. Assume that all closed surfaces are positively oriented. Furthermore, x is always the independent variable and y the dependent variable in differential equations. Good luck, have fun, and as always: "NOTA" stands for "None of These Answers is correct."

1. If
$$f(x, y) = x^2 + xy + y^2$$
, find ∇f .
(A) $\langle x + y, x + y \rangle$
(C) $\langle x + 2y, 2x + y \rangle$
(E) NOTA
(B) $\langle 2x + y, x + 2y \rangle$
(D) $\langle 2x + 2y, 2x + 2y \rangle$

2. Solve the differential equation below for *y* up to an arbitrary constant *C*:

$$y' = y(1 - \tan(x))$$

(A) $Cx \cos(x)$ (B) $Cx \sin(x)$ (C) $Ce^x \cos(x)$ (D) $Ce^x \sin(x)$ (E) NOTA

3. Evaluate the integral below.

(A)
$$\frac{1}{2}$$
 (B) 1 (C) $\frac{\pi}{2}$ (D) π (E) NOTA

4. Find $y(\frac{\pi}{4})$ given that y(0) = 0 and y satisfies the differential equation below.

$$\cos(x)y' + \sin(x)y = \cos^2(x)$$
(A) $\frac{\pi}{4\sqrt{2}}$
(B) $\frac{\pi}{8\sqrt{2}}$
(C) $\frac{\pi}{4\sqrt{2}} + \frac{1}{2\sqrt{2}}$
(D) $\frac{\pi}{8\sqrt{2}} + \frac{1}{2\sqrt{2}}$
(E) NOTA

5. How many of the following functions satisfy the partial differential equation below?

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

I
$$f = \cos(x) \cos(y) \cos(z)$$

II $f = x^2 + y^2 - 2z^2$
III $f = e^x \cos(y)$
IV $f = x^2 + y^2 + z^2$
(A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA

6. Which of the following provides the most general solution to the differential equation below? *C* and *D* denote arbitrary constants.

$$y'' - 2y' + 17y = 0$$
(A) $Ce^{4x} \cos(x)$
(C) $Ce^{4x} \cos(x)$
(E) NOTA
(B) $Ce^{4x} \cos(x) + De^{4x} \sin(x)$
(D) $Ce^x \cos(4x) + De^x \sin(4x)$

7. Find the unit tangent vector $\hat{\mathbf{T}}(t)$ for $\mathbf{r}(t) = \langle e^t \cos(t), e^t \sin(t), \sqrt{2}e^t \rangle$

(A)
$$e^{t} \langle \cos(t) - \sin(t), \cos(t) + \sin(t), \sqrt{2} \rangle$$

(B) $e^{t} \langle \cos(t) + \sin(t), \cos(t) - \sin(t), \sqrt{2} \rangle$
(C) $\frac{1}{2} \langle \cos(t) - \sin(t), \cos(t) + \sin(t), \sqrt{2} \rangle$
(D) $\frac{1}{2} \langle \cos(t) + \sin(t), \cos(t) - \sin(t), \sqrt{2} \rangle$
(E) NOTA

8. Find the unit normal vector $\hat{\mathbf{N}}(t)$ for the $\mathbf{r}(t)$ provided in the previous question.

(A)
$$\frac{1}{2}\langle -\cos(t) - \sin(t), \cos(t) - \sin(t), 0 \rangle$$

(B) $\frac{1}{\sqrt{2}}\langle -\cos(t) - \sin(t), \cos(t) - \sin(t), 0 \rangle$
(C) $e^t \langle -2\sin(t), 2\cos(t), \sqrt{2} \rangle$
(D) $\frac{1}{\sqrt{6}} \langle -2\sin(t), 2\cos(t), \sqrt{2} \rangle$
(E) NOTA

9. Evaluate $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ given $\mathbf{F} = \langle (1 + xyz)e^{xyz}, x^{2}ze^{xyz}, x^{2}ye^{xyz} \rangle$. *C* is the curve defined by $\mathbf{r}(t) = \langle \sqrt{1 + t^{2}}, (1 + t^{2})^{\frac{3}{2}}, 1 + t^{2} \rangle$ where $t : 0 \to 2\sqrt{2}$ (A) $e^{729} - 1$ (B) $e^{729} - e$ (C) $3e^{729} - e$ (D) $3e^{729} - e^{3}$ (E) NOTA

10. Find y(2) given that y is subject to the initial conditions y(1) = 0, y'(1) = 1, and y satisfies the differential equation

11. Find the equation of the plane tangent to the surface $x^2 + y^2 + \frac{1}{2}z^2 = 1$ at the point $(\frac{1}{2}, \frac{1}{2}, 1)$

(A) 2x + 2y + z = 3(B) 4x + 4y + z = 5(C) x + y + z = 2(E) NOTA (D) x + y + 2z = 3

12. Evaluate the integral below:

(A)
$$\frac{1}{3}e$$
 (B) $\frac{1}{3}(e-1)$ (C) $\frac{1}{6}e$ (D) $\frac{1}{6}(e-1)$ (E) NOTA

13. If f(x) is the particular solution to the differential equation below (the non-homogenous solution), find f(0).

(A)
$$-\frac{4}{25}$$
 (B) $-\frac{3}{25}$ (C) $\frac{3}{25}$ (D) $\frac{4}{25}$ (E) NOTA

14. If f(x) is the particular solution to the differential equation below, find $f(\frac{1}{2})$.

$$y'' + 4y = \sin(2x)$$
(A) $-\frac{1}{8}\cos(1)$
(B) $\frac{1}{8}\cos(1)$
(C) $-\frac{1}{8}\sin(1)$
(D) $\frac{1}{8}\sin(1)$
(E) NOTA

15. Yusuf and Jack are arguing over the correct way to solve the following integral:

$$\oint_{\partial V} \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \cdot d\mathbf{S}$$

Where *V* is a unit ball centered at the origin. Yusuf applies divergence theorem and gets 0, but Jack just directly solves the flux integral and gets 4π . Who is correct?

(A) Yusuf (B) Jack (C) Neither (D) Need more info (E) NOTA

16. Evaluate the line integral below where *C* is the curve $\frac{x^2}{2}$ from x = 0 to x = 1.

$$\int_C x^3 ds$$

(A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{2+2\sqrt{2}}{15}$ (D) $\frac{2+2\sqrt{2}}{30}$ (E) NOTA

17. Find the Laplace Transform of $t^2 \sin(t)$ evaluated at s = 1. It is helpful to know that $\mathcal{L}{\sin(t)} = \frac{1}{s^2+1}$.

(A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) 1 (D) 2 (E) NOTA

18. Evaluate $\mathcal{L}^{-1}\{s^{-\frac{3}{2}}\}$.

(A) \sqrt{t} (B) $2\sqrt{t}$ (C) $\sqrt{\frac{t}{\pi}}$ (D) $2\sqrt{\frac{t}{\pi}}$ (E) NOTA

19. Find the maximum value of $e^{-x^2-y^2-z^2}$ subject to the constraint x + 2y + 3z = 1.

(A) $e^{-\frac{1}{3}}$ (B) $e^{-\frac{1}{10}}$ (C) $e^{-\frac{1}{14}}$ (D) $e^{-\frac{1}{21}}$ (E) NOTA

The following information may be useful for 20-21: ∇^2 is known as the Laplacian, and it is equivalent to $\nabla \cdot \nabla$. In 3-dimensional cartesian coordinates,

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

The partial differential equation $\nabla^2 f = 0$ is known as Laplace's equation, and it has important applications in physics and math.

20. Let *f* be some smooth function that satisfies $\nabla^2 f = 1$. Furthermore, let $f_{ave}(r)$ denote the average value of *f* over some sphere of radius *r* centered at the origin. Given that

$$\frac{df_{ave}}{dr} = \frac{1}{4\pi r^2} \oint_{\partial B} \nabla f \cdot d\mathbf{S}$$

where *B* is a ball of radius *r* centered at the origin, find an expression for $f_{ave}(r)$ up to an arbitrary constant *C*.

- (A) $\frac{r^2}{6} + C$ (B) $\frac{r^2}{2} + C$ (C) $\frac{r}{3} + C$ (D) $\frac{r}{2} + C$ (E) NOTA
- **21.** Suppose *f* satisfies Laplace's equation in 3d with the boundary condition that $f(x, y, z) = 1 z^2$ on the unit sphere centered at the origin. What is f(0,0,0)?

(A) 0 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 1 (E) NOTA

22. Jun is blowing a bubble that is in the shape of the surface defined by V: $x^2 + y^2 + z^2 = 2zt + 1$ for $z \ge 0$ where t is time. His air flow can be described as the vector field $\mathbf{A} = \langle 0, -e^{-y-z}, e^{-y-z} \rangle$. Let

$$\Phi = \iint_V \mathbf{A} \cdot d\mathbf{S}$$

What is $\frac{d\Phi}{dt}$?

(A) 0 (B) $\frac{8}{3}\pi t$ (C) $\frac{2}{3}\pi t^2$ (D) $\frac{4}{3}\pi t^2$ (E) NOTA

23. Let y(x) be a function such that it minimizes the integral below:

$$\int_0^{\frac{\pi}{2}} \sqrt{y^2 + \left(\frac{dy}{dx}\right)^2} dx$$

with boundary conditions y(0) = 1 and $y(\frac{\pi}{2}) = 1$. Find $y(\frac{\pi}{3})$.

(A)
$$\frac{1}{2}$$
 (B) $\frac{\sqrt{3}}{2}$ (C) $\sqrt{3} + 1$ (D) $\sqrt{3} - 1$ (E) NOTA

24. What is the following equal to?

$$\lim_{n \to \infty} \left(\frac{1}{2} \ln(n) + \sum_{k=1}^{2n} (-1)^{k+1} \ln(k) \right)$$
(A) $-\frac{1}{2} \ln(\pi)$ (B) $\frac{1}{2} \ln(\pi)$ (C) $\ln(\pi)$ (D) ∞ (E) NOTA

25. The vector area **a**, of a surface *A* is defined as

$$\mathbf{a} = \int_A d\mathbf{S}$$

Find the vector area of the surface $x^2 + y^2 + z^2 = 1$ restricted to x + y + z > 1.

- (A) $\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$ (C) $\langle \frac{2\pi}{3\sqrt{3}}, \frac{2\pi}{3\sqrt{3}}, \frac{2\pi}{3\sqrt{3}} \rangle$ (E) NOTA (B) $\langle \frac{\pi}{3\sqrt{3}}, \frac{\pi}{3\sqrt{3}}, \frac{\pi}{3\sqrt{3}} \rangle$ (D) $\langle \frac{\pi}{\sqrt{3}}, \frac{\pi}{\sqrt{3}}, \frac{\pi}{\sqrt{3}} \rangle$
- **26.** Evaluate the following integral:

where $\mathbf{x} = \langle x_1, x_2, x_3, x_4 \rangle$ and

$$\mathcal{A} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -14 & 12 \\ 0 & 0 & 12 & -21 \end{pmatrix}$$

Note: A 1-by-1 matrix is a scalar, e.g. $e^{[-x^2]} = e^{-x^2}$.

(A)
$$14\sqrt{3}\pi^2$$
 (B) $10\sqrt{3}\pi^2$ (C) $\frac{\pi^2}{14\sqrt{3}}$ (D) $\frac{\pi^2}{10\sqrt{3}}$ (E) NOTA

The following information may be useful for 27-28:

The Bessel function is a special function that has many important applications in physics and math. It is a solution to the differential equation below:

$$x^2y'' + xy' + (n^2 - x^2)y = 0$$

and is equal, for integer *n*, to

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!(k+n)!} \left(\frac{x}{2}\right)^{2k+n}$$

27. Evaluate the integral below in terms of Bessel functions.

(A)
$$\pi J_2(0)$$
 (B) $\pi J_0(1)$ (C) $\pi J_1(0)$ (D) $\pi J_0(2)$ (E) NOTA

28. Evaluate the integral below

(A) 1 (B)
$$\frac{1}{\sqrt{2}}$$
 (C) π (D) $\frac{\pi}{\sqrt{2}}$ (E) NOTA

29. Find y(-1) given that y(0) = 0, y(1) = 1, and y satisfies the differential equation

$$y'' + 2xy' + (x^2 + 1)y = 0$$

(A) $-\sqrt{e}$ (B) -1 (C) 1 (D) \sqrt{e} (E) NOTA

30. Consider a chain of connected unit vectors $\{\mathbf{t}_0 \dots \mathbf{t}_l\}$.

Let 1 < n < m < l. What is the expected value of $\mathbf{t}_n \cdot \mathbf{t}_m$ equal to in terms of *m* and *n*? *C* denotes some constant that is not necessarily expressible analytically.

(A) C (B)
$$C^{m-n}$$
 (C) $\frac{C}{m-n}$ (D) $\frac{C}{(m-n)^2}$ (E) NOTA

Where $\mathbf{t}_i \cdot \mathbf{t}_{i+1} = \cos(\theta_i)$. The probability of any given configuration is proportional to $e^{\mathcal{H}}$ where