Mu Gemini

A: 2

E: NOTA

Important Instructions for this Test:

B: 3

All inverse trigonometric functions are restricted to their traditional domains and ranges, and the constant $i = \sqrt{-1}$. Good luck, have fun, and as always: "NOTA" stands for "None of These Answers is correct."

D: 5

1. How many of the 26 letters in the English alphabet appear in both of the words *INTEGRAL* and DERIVATIVE?

C: 4 **2.** What is the area of the finite region bound by the curves $y = x^3$ and $y = x^4$?

B: $\frac{1}{16}$ C: $\frac{1}{20}$ D: $\frac{1}{24}$ A: $\frac{1}{12}$ E: NOTA

3. Compute the derivative of $(1 + x + x^2)^2$ with respect to *x*, evaluated at x = 1.

A: 18 B: 24 C: 30 D: 36 E: NOTA

4. Compute the following integral:

$$\int_{0}^{1} (1+x+x^2)^2 dx.$$

A: 3.4 B: 3.5 C: 3.6 D: 3.7 E: NOTA

5. A square with area 18 is rotated about one of its diagonals to create a solid. What is the volume of this solid?

C: 27π D: 36π A: 18π B: 24π E: NOTA

6. A square with area 18 is rotated about one of its diagonals to create a solid. What is the surface area of this solid?

A: $18\pi\sqrt{2}$ B: $24\pi\sqrt{2}$ C: $27\pi\sqrt{2}$ D: $36\pi\sqrt{2}$ E: NOTA

7. The function $f(x) = |x| + \frac{1}{|x+1|}$ has two local minima at the points (a, b) and (c, d). Compute *abcd*.

A: −2 B: −1 C: 0 D: 1 E: NOTA

8. Which of the following is closest to 0.99¹⁰⁰?

A: 0.2 B: 0.4 C: 0.6 D: 0.8 E: NOTA

9. Given that r is a nonzero real number, and the series $1^r + 2^r + 3^r + \cdots$ converges, does the series $1^{1/r} + 2^r + 3^r + \cdots$ $2^{1/r} + 3^{1/r} + \cdots$ converge or diverge?

A: Converge B: Diverge C: Either D: Neither E: NOTA **10.** Compute the following integral:

$$\int_{-\infty}^{\infty} |x| - |x - 1| - |x - 2| + |x - 3| \, dx.$$

11. Let $f(x) = \arctan x$ and a = 0.01. Which of the following numbers is the largest?

A:
$$f(f(a))$$
 B: $f(a)$ C: $1 - f'(a)$ D: $-f''(a)$ E: NOTA

12. Given that $\int_0^1 x^a dx = a$, which of the following is closest to the value of *a*?

A: 0.6 B: 0.7 C: 0.8 D: 0.9 E: NOTA

13. If $f(x) = x^2 |x|$, then compute the value of f'''(0).

A: 1 B: 2 C: 3 D: 6 E: NOTA

14. For each positive integer n, let f(n) denote the remainder when n^n is divided by 3. Compute the following limit:

A:
$$\frac{1}{3}$$
 B: $\frac{1}{2}$ C: $\frac{2}{3}$ D: $\frac{5}{6}$ E: NOTA

15. The line y = ax + b intersects the graph $y = x + \sin x$ infinitely many times. Which of the following cannot be a + b?

A: -1 B: 0 C: 1 D: 2 E: NOTA

16. The global minimum and maximum of the function $f(x) = \arcsin x \cdot \arccos x$ are *m* and *M*, respectively. Compute m/M.

A: -8 B: -4 C: -2 D: -1 E: NOTA

17. Numerically, the area of a rectangle with integer side lengths is 2 greater than its perimeter. Find the sum of all possible values for the length of the shorter side of the rectangle.

A: 3 B: 4 C: 6 D: 7 E: NOTA

18. For all x > 0, consider the function

$$f(x) = x + \frac{x}{x + \frac{x}{x + \cdots}} - \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}}.$$

Compute the sum of the coordinates of the unique inflection point of y = f(x).

A: 1 B: 2 C: 3 D: 4 E: NOTA

<u>Mu Gemini</u>

19. The circle $x^2 + y^2 = 1$ and the parabola $y = x^2$ intersect at two points. The two lines tangent to the parabola at these two points intersect at (0, *a*). Which of the following is closest to *a*?

A: -0.5 B: -0.6 C: -0.7 D: -0.8 E: NOTA

20. The polar graphs $r = \arccos \theta$ and $r = \arcsin \theta$ intersect at two points. Which of the following is closest to the distance between these two points?

A: 0.7 B: 0.8 C: 0.9 D: 1.0 E: NOTA

21. The polynomial $x^5 + ax^4 + bx^3 + x^2 + 1$ is divisible by $(x + 1)^2$. Compute *ab*.

A: 42 B: 56 C: 64 D: 84 E: NOTA

22. Let (A, B) be the unique point on the curve $(x^2 + y^2)^2 = 2025x$ such that *B* is maximized. Which of the following is closest to B/A?

A: 1.5 B: 1.6 C: 1.7 D: 1.8 E: NOTA

23. Sharvaa is pouring water into his empty cylindrical water bottle with radius 2 and height 10. The water flows into the bottle at a rate of π cubic units per second. However, unbeknownst to him, Albert poked a peculiar hole into the water bottle. If the water bottle contains W units of water, then water flows out the hole at a rate of W/40 cubic units per second. How many seconds will it take for Sharvaa to fill his bottle?

A: ln 10 B: ln 20 C: ln 30 D: ln 40 E: NOTA

24. For each positive integer *x*, let $\pi(x)$ denote the number of prime numbers less than or equal to *x*. The Prime Number Theorem asserts that $\lim_{x\to\infty} \frac{\pi(x)}{x/\ln x} = 1$. Using this information, which of the following is closest to $\pi(10^{2025})$?

A: 10²⁰²⁰ B: 10^{2020.5} C: 10²⁰²¹ D: 10^{2021.5} E: NOTA

25. Define $\pi(x)$ as in Question 24. Compute the following limit:

$$\lim_{x\to\infty}\frac{\pi(x)\cdot\pi(x^3)}{\pi(x^2)^2}$$

A: 4/3 B: 3/2 C: 2 D: 3 E: NOTA

26. Compute the following limit:

$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{\cos x}{x^2} \right).$$

A: 1/2 B: 3/4 C: 5/6 D: 7/8 E: NOTA

27. Let $f(x) = \ln(1 + x + x^2 + x^3 + x^4 + x^5) - \ln(1 + x + x^2 + x^3 + x^4)$. Which of the following terms in the Maclaurin series of f(x) has a nonzero coefficient?

A: x^{101} B: x^{102} C: x^{103} D: x^{104} E: NOTA

28. Compute the value of the integral

$$\int_{1}^{\infty} \frac{1+\ln x}{1+x^{x}} dx.$$

A: ln 2 B: 1 C: ln 3 D: 2 E: NOTA

29. For each positive integer *n*, let f(n) denote the number of solutions to the equation x + y + z = n, where *x*, *y*, and *z* are nonnegative integers. There exist unique positive rational numbers *r* and *s* such that $\lim_{n\to\infty} \frac{f(n)}{rn^s} = 1$. Compute r + s.

A: 7/3 B: 5/2 C: 10/3 D: 7/2 E: NOTA

30. Let *R* be the region in the first quadrant bounded by the coordinate axes and the curve $e^x + e^y = e^{x+y}$. Which of the following is the area of *R*?

A: $\frac{\pi^2}{12}$ B: $\frac{\pi^2}{9}$ C: $\frac{\pi^2}{8}$ D: $\frac{\pi^2}{6}$ E: NOTA