1. B: Let x be the number of hours Alejandro works. Solve $300 + 9x \ge 500$ to find $x \ge \frac{200}{9}$ so the least integer x is 23.

2. C: Assume Jackson and Mary start at the origin, A(0,0). Jackson goes to B(3,2) and Mary goes to C(-1,-2). Then $BC = \sqrt{(3+1)^2 + (2+2)^2} = \sqrt{32} = 4\sqrt{2}$.

3. B: The height of the cylinder is $8\sin(60^\circ) = 8\left(\frac{\sqrt{3}}{2}\right) = 4\sqrt{3}$. Let *r* be the radius of the base. Then $\pi r^2(4\sqrt{3}) = 48\pi\sqrt{3}$. Therefore, $r^2 = 12$ and $r = \sqrt{12} = 2\sqrt{3}$. Thus, the diameter of the base is $2(2\sqrt{3}) = 4\sqrt{3}$.

4. A: Let DC = x. Since $\triangle ADC$ is a 30-60-90 triangle, $AC = x\sqrt{3}$. Then $BC = x\sqrt{3} - 20$. But since $\triangle DBC$ is a 45-45-90 triangle, BC = x. Therefore, $x = x\sqrt{3} - 20$ or $20 = x(\sqrt{3} - 1)$. Thus, $x = \frac{20}{\sqrt{3} - 1} = \frac{20(\sqrt{3} + 1)}{2} = 10(\sqrt{3} + 1)$.

5. B: There are $10 \cdot 9 \cdot 26 \cdot 25 = 58,500$ possible passwords.

6. C: Let x be the original price. Then x(0.8)(1.05) = 50.40. Thus, $x = \frac{50.40}{0.84} = 60$.

7. C: Let the dimensions of each pen be x units across and y units vertically. From using 360 total feet of fencing, 6x + 4y = 360 or $y = \frac{360-6x}{4}$. We wish to maximize $A = xy = \frac{x(360-6x)}{4}$. This simplifies to $A(x) = 90x - \frac{3}{2}x^2$. The maximum of a quadratic occurs at $x = \frac{-90}{2 \cdot -\frac{3}{2}} = 30$. Then $y = \frac{360-6\cdot30}{4} = 45$ and the maximum area of one pen is $xy = 30 \cdot 45 = 1350$ square feet.

8. B: Since the sum of the three angles in arithmetic progression is 180 degrees, then $m \angle B = 60^{\circ}$. Let the other two measures be $m \angle A = 60 - d$ and $m \angle C = 60 + d$. Since every measure is divisible by 5, then d must be divisible by 5. To maximize $m \angle C - m \angle A = 2d$, choose d to be the largest multiple of 5 less than 60, which is 55. Then the maximum difference is 2(55) = 110 when the angles measure 5, 60, and 115 degrees.

9. E: Use the model $A = P(1.15)^t$ to represent the town's population A after t years, where P is the initial population. To triple, $A = 3P = P(1.15)^t$. Dividing by P gives $3 = 1.15^t$. Taking the natural log of both sides gives $\ln(3) = \ln(1.15^t)$. Use a log property to write $\ln(3) = t \cdot \ln(1.15)$ so $t = \frac{\ln(3)}{\ln(1.15)}$.

10. D: Freda's location can be modeled by $(x - 1)^2 + (y - 2)^2 = 25$ and Alex's location can be modeled by $(x - 4)^2 + (y - 6)^2 = 20$. Squaring and simplifying gives $x^2 - 2x + y^2 - 4y = 20$ and $x^2 - 8x + y^2 - 12y = -32$. Subtract the two equations to get 6x + 8y = 52 so $y = \frac{26-3x}{4}$. Substitute into the first equation: $(x - 1)^2 + \left(\frac{26-3x}{4} - 2\right)^2 = 25$. Multiply by 16 and expand to get $16x^2 - 32x + 16 + 324 - 108x + 9x^2 = 400$. This simplifies to the quadratic $25x^2 - 140x - 60 = 0$. Factor as 5(5x + 2)(x - 6) = 0 so $x = 6, -\frac{2}{5}$. Since they meet at integer coordinates, x = 6. Then $(6 - 1)^2 + (y - 2)^2 = 25$ so y = 2. The sum x + y = 6 + 2 = 8.

11. B: Let *a* and *r* be the initial term and constant ratio of Anthony's series, where $\frac{a}{1-r} = 24$. In Juliette's series, the first term is a^2 and the ratio is r^2 for a sum of $\frac{a^2}{1-r^2} = 720$. From the first equation, a = 24(1-r). Substitute into the second to write $\frac{24^2(1-r)^2}{1-r^2} = 720$. Since $r \neq 1$ because |r| < 1 to converge, this simplifies to $\frac{576(1-r)}{1+r} = 720$ or 576 - 576r = 720 + 720r. Solving for *r* gives $r = -\frac{1}{9}$.

12. C: The volume of a prism is the area of the base times the height. In this case, each base is a trapezoid of area $\frac{1}{2}(4+10) \cdot 20 = 140$. The height of the prism is 15. So the total volume is $140 \cdot 15 = 2100$.

13. D: Let the radius of the cylinder be r and the height be h. Then $\pi r^2 h = 16\pi^5$ and $2\pi r^2 + 2\pi r h = 8\pi^3 + 16\pi^4$. Simplify the two equations to $r^2 h = 16\pi^4$ and $r^2 + rh = 4\pi^2 + 8\pi^3$. Notice that when $r = 2\pi$ and $h = 4\pi^2$ then the two equations are satisfied. Now consider one cycle of the string. Unfold the cylinder to form its lateral face in the shape of a rectangle of width $2\pi r = 4\pi^2$ and height $\frac{h}{2} = 2\pi^2$. By the Pythagorean Theorem, the length of the string for one cycle is $\sqrt{(4\pi^2)^2 + (2\pi^2)^2} = \sqrt{20\pi^4} = 2\pi^2\sqrt{5}$. Thus, the total length of the string is $4\pi^2\sqrt{5}$.

14. D: There are $9 \cdot 8 = 72$ possible linear equations. If b > 0 then the line must pass through Quadrant II no matter the slope. This accounts for $4 \cdot 9 = 36$ possibilities. If b = 0, then a < 0 to pass through Quadrant II. This accounts for 4 more possibilities. If b < 0, then a < 0 as well to pass through Quadrant II, giving $3 \cdot 4 = 12$ more cases. The probability is $\frac{36+4+12}{72} = \frac{2}{3}$.

15. D: Write $x(4-x^2)^{\frac{1}{2}} = 4 - x^2$ or $(4-x^2)^{\frac{1}{2}}(x-(4-x^2)^{\frac{1}{2}}) = 0$. If $(4-x^2)^{\frac{1}{2}} = 0$, then $4-x^2 = 0$ or $x = \pm 2$. If $x - (4-x^2)^{\frac{1}{2}} = 0$ then $x = \sqrt{4-x^2}$. Square both sides to get $x^2 = 4 - x^2$ or $2x^2 = 4$ so $x = \pm\sqrt{2}$. However, $x = -\sqrt{2}$ is extraneous since $t(-\sqrt{2}) < 0$ but $h(-\sqrt{2}) > 0$. Thus, there are only 3 solutions.

16. D: Rearrange to $I = \frac{V}{R} = \frac{21+i}{2-3i}$. Multiply numerator and denominator by the conjugate, (2 + 3i). Then $(21 + i)(2 + 3i) = 42 + 2i + 63i + 3i^2 = 42 + 65i - 3 = 39 + 65i$. Also $(2 - 3i)(2 + 3i) = 4 - 6i + 6i - 9i^2 = 4 + 9 = 13$. Thus, $I = \frac{39+65i}{13} = 3 + 5i$.

17. B: When they all work together, they work at a combined rate of $\frac{1}{6} + \frac{1}{9} + \frac{1}{12} = \frac{13}{36}$, so they can paint $\frac{13}{36}$ of the fence per hour. After 2 hours, they have completed $\frac{13}{36} \cdot 2 = \frac{13}{18}$ of the fence, leaving $\frac{5}{18}$ of the fence left to be painted. Alex and Bella have a combined rate of $\frac{1}{6} + \frac{1}{9} = \frac{5}{18}$, so it will take them an additional hour to finish the rest.

18. D: Suppose $T_1 = 2\pi \sqrt{\frac{\ell_1}{g}}$ and let $\ell_2 = 4\ell_1$. Then $T_2 = 2\pi \sqrt{\frac{\ell_2}{g}} = 2\pi \sqrt{\frac{4\ell_1}{g}} = 2\pi \cdot 2\sqrt{\frac{\ell_1}{g}} = 2T_1$. This shows that if the length is quadrupled, then the period will double.

19. A: Since lcm(8,9) = 72, then *M* is divisible by 72. Let M = 100a + 10b + c. Then N = 100c + 10b + a. Note M - N = 99(a - c) = 198 so a - c = 2 and a = 2 + c. The three-digit numbers divisible by 72 are: M = 144, 216, 288, 360, 432, 504, 576, 648, 720, 792, 864, 936. The only possibility where the hundreds digit is 2 more than the ones digit is 432. The product of the digits of *M* is $4 \cdot 3 \cdot 2 = 24$.

20. C: To get from A to B, the player makes 10 total moves: 4 right and 6 left. Thus, there are $\binom{10}{4} = 210$ possible paths from A to B. From A to C there are $\binom{4}{2} = 6$ paths and from C to B there are $\binom{6}{2} = 15$ paths. Thus, there are $210 - 6 \cdot 15 = 120$ paths from A to B not through C.

21. C: The maximum occurs when $t = \frac{-48}{2 \cdot -16} = \frac{3}{2}$. Then $y\left(\frac{3}{2}\right) = -16\left(\frac{3}{2}\right)^2 + 48\left(\frac{3}{2}\right) + 28$ = -36 + 72 + 28 = 64.

22. C: Solve $-16t^2 + 48t + 28 = 0$. Divide by -4: $4t^2 - 12t - 7 = 0$. Factor as (2t + 1)(2t - 7) = 0 so $t = -\frac{1}{2}$, $t = \frac{7}{2}$. Since time must be positive, $t = \frac{7}{2}$.

23. E: By the Rational Root Theorem, the rational roots could be $x = \pm 1, \pm 5, \pm \frac{1}{2}, \pm \frac{5}{2}$. Use synthetic division to see that x = 1 is a root. Factor as $(x - 1)(2x^3 - 3x^2 + 8x + 5)$. Divide again to see that $x = -\frac{1}{2}$ is a root so factor as $(x - 1)(2x + 1)(x^2 - 2x + 5)$. The non-real roots are $x = \frac{2\pm\sqrt{4-4+5}}{2}$ which simplifies to $x = 1 \pm 2i$. Their product is $(1 + 2i)(1 - 2i) = 1 - 4i^2 = 1 + 4 = 5$.

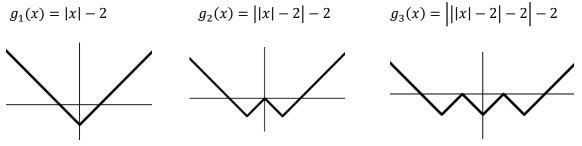
24. A: Multiply by the LCD $Rr_1r_2r_3$ to get $r_1r_2r_3 = Rr_2r_3 + Rr_1r_3 + Rr_1r_2$. Rearrange to get: $r_1(r_2r_3 - Rr_3 - Rr_2) = Rr_2r_3$. Divide to find $r_1 = \frac{Rr_2r_3}{r_{2r_3} - Rr_3 - Rr_2}$.

25. C: Let (a, b) be the upper right vertex of the rectangle where b = -ka + k. Then (a, -b) is the lower right vertex so the height of the rectangle is 2b = 2k - 2ka. The width of the rectangle is a. The area is then $A = a(2k - 2ka) = -2ka^2 + 2ka$. The maximum occurs when $a = \frac{-2k}{2 - 2k} = \frac{1}{2}$. The maximum area is then $-2k\left(\frac{1}{2}\right)^2 + 2k\left(\frac{1}{2}\right) = -\frac{k}{2} + k = \frac{k}{2}$. So $\frac{k}{2} = 4$ and k = 8.

26. A: Given $6 = \frac{k(300)}{4}$ so $k = \frac{24}{300} = \frac{2}{25}$. Then $V = \frac{kT}{P} = \frac{\frac{2}{25} \cdot 960}{12} = \frac{1920}{300} = 6.4$.

27. D: Use the stars-and-bars technique for counting. With no restriction, imagine 12 + 4 = 16 stars and 4 bars. There are $m = \binom{16}{4}$ ways to order the 4 bars among the 16 bars. For each employee to get at least one coin, then there are 12 - 5 = 7 remaining coins to distribute among the 5 employees. Use 7 + 4 = 11 stars and 4 bars to get $n = \binom{11}{4}$ ways. Thus, $m - n = \binom{16}{4} - \binom{11}{4}$.

28. B: Write the equation of the ellipse as $9(x - 8)^2 + 25y^2 = 900$ which expands and simplifies to $9x^2 - 144x + 25y^2 = 324$. The equation of the hyperbola can be written as $9x^2 - 15y^2 = 36$. Multiply the first equation by 3 and add 5 times the second equation to eliminate y^2 : $3(9x^2 - 144x + 25y^2) + 5(9x^2 - 15y^2) = 3(324) + 5(36)$ so $72x^2 - 432x - 1152 = 0$. Divide by 72 to get $x^2 - 6x - 16 = 0$. Factor as (x - 8)(x + 2) = 0 so x = 8, x = -2. If x = 8, then $y = \pm 6$. If x = -2 then y = 0. The possible locations are (-2, 0), (8, 6), (8, -6). The maximum distance is then $\sqrt{8^2 + 6^2} = 10$. 29. C: Sketch the first few iterations. Notice



Continuing, notice that $g_n(x)$ has *n* relative minima and n-1 relative maxima. When y = -1 is drawn, $g_1(x)$ intersects 2 times, $g_2(x)$ intersects 4 times, and $g_3(x)$ intersects 6 times. Continuing this pattern, $g_n(x)$ intersects y = -1 a total of 2*n* times. To have 100 solutions, then 2n = 100 and n = 50.

30. D: Define the number of smartphones, tablets, laptops, and smartwatches with variables *a*, *b*, *c*, *d*, respectively. We have following system:

 $\begin{cases} 100a + 150b + 300c + 50d = 31500\\ 200a + 250b + 500c + 150d = 61500\\ a + b + c + d = 280\\ a = b + 100 \end{cases} \text{ or } \begin{cases} 2a + 3b + 6c + d = 630\\ 4a + 5b + 10c + 3d = 1230\\ a + b + c + d = 280\\ a = b + 100 \end{cases}$ Substitute a = b + 100 into each of the first three equations: $\begin{cases} 5b + 6c + d = 430\\ 9b + 10c + 3d = 830.\\ 2b + c + d = 180 \end{cases}$

Multiply the first by 3 and subtract the second: 6b + 8c = 460. Subtract the third from the first: 3b + 5c = 250. Eliminate *b* to get 2c = 40 so c = 20. Then b = 50, a = 150, and d = 60. Thus, d - c = 60 - 20 = 40.