Important Instructions For This Test: "In simplest form" means the numerator and denominator are relatively prime to each other, and "square-free" means the maximum power of a divisor of that integer is 1, for example: 14 is square-free but not 12. Good luck, have fun, and as always: "NOTA" stands for "None of These Answers is correct." **1.** Consider square ABCD, AC = 20, compute the area of ABCD. (C) $200\sqrt{2}$ **(A)** 200 **(B)** 250 **(D)** 400 (E) NOTA **2.** Consider rectangle *ABCD*, let *AC* and *BD* meet at *K*, given AK = 10, find the maximum possible area of ABCD. (A) 50 **(B)** 100 **(C)** 150 **(D)** 200 (E) NOTA **3.** Consider rhombus *ABCD* with AB = AC = 6, find the area of *ABCD*. (A) $9\sqrt{3}$ **(B)** $18\sqrt{3}$ **(C)** 36 **(D)** 18 (E) NOTA 4. Consider square ABCD, point E lies inside the square such that ABE is equilateral. Find the measure of $\angle BEC$ in degrees. (A) 30 **(B)** 45 **(C)** 60 **(D)** 75 (E) NOTA 5. Consider squares ABCD and CEFG with AB = 2, EF = 5. (The squares don't share a common region) Given that *B*, *C*, *G* lie on the same line and *C*, *D*, *E* lie on the same line, compute the area of triangle ACF. (C) $2\sqrt{5}$ (D) $5\sqrt{2}$ **(A)** 5 **(B)** 10 (E) NOTA 6. Consider the parallelogram ABCD with $AC \perp BD$. If $BD = \sqrt{3}AC$, AB = 5. Find the area of the parallelogram; the answer is in the simplest form of $\frac{a\sqrt{b}}{c}$, calculate a + b + c. **(A)** 30 **(B)** 28 **(C)** 27 **(D)** 25 (E) NOTA 7. Consider a convex quadrilateral *ABCD* such that $\angle A = 130^\circ$, $\angle C = 115^\circ$, AB = AD = 25. Find the length of AC. (C) $\frac{25}{2}$ (D) $\frac{25}{\sqrt{2}}$ (A) $25\sqrt{3}$ **(B)** $25\sqrt{2}$ (E) NOTA

	Please Use the Following Information to Answer Questions 8 to 9:								
	Consider a unit square <i>ABCD</i> , the points <i>E</i> , <i>F</i> , <i>G</i> , <i>H</i> outside the square satisfy that $\triangle ABE$, $\triangle BCF$, $\triangle CDG$, $\triangle DAH$ are equilateral triangles. Denote the incenters of the equilateral triangles above as <i>I</i> ₁ , <i>I</i> ₂ , <i>I</i> ₃ , <i>I</i> ₄ .								
8.	. Compute the area of <i>EFGH</i> .								
	(A) 3	(B) $4 + 2\sqrt{3}$	(C) $\sqrt{3} + 1$	(D) $\sqrt{3} + 2$	(E) NOTA				
9.	9. Compute the area of $I_1I_2I_3I_4$, the answer is in the simplest form of $\frac{a+b\sqrt{c}}{d}$, <i>c</i> is square-free. Compute $a+b+c+d$.								
	(A) 12	(B) 10	(C) 8	(D) 11	(E) NOTA				
10.	10. Consider square <i>ABCD</i> with side length 5. Denote the circumcircle of the square as Γ . Choose the midpoint <i>N</i> of the minor arc <i>BC</i> , connect <i>AN</i> and extend to meet the line <i>DC</i> at point <i>F</i> , find the length of <i>CF</i> .								
	(A) 5	(B) 5√2	(C) $5(\sqrt{2}-1)$	(D) 10	(E) NOTA				
11. Consider square <i>ABCD</i> such that $AB = 4$, circle ω centered at <i>O</i> is tangent to <i>AB</i> and <i>AD</i> , it also passes through <i>C</i> . The radius of ω is in the form of $a - b\sqrt{c}$, <i>c</i> is square-free. Compute $a + b + c$.									
	(A) 8	(B) 12	(C) 14	(D) 16	(E) NOTA				
12. Consider triangle <i>ABC</i> , denote <i>M</i> , <i>N</i> as the midpoints of <i>AB</i> , <i>AC</i> . If the perimeter of $\triangle AMN$ is 20 and the perimeter of quadrilateral <i>BCNM</i> is 25, find <i>AB</i> + <i>AC</i> .									
	(A) 25	(B) 30	(C) 35	(D) 50	(E) NOTA				
13.	13. Consider square <i>ABCD</i> and a quarter circle inside <i>ABCD</i> centered at <i>A</i> with radius <i>AB</i> . Point <i>E</i> is selected on the quarter circle satisfying $\angle EAB = 2\angle ECD$, compute AB^2 if $CE = 2$.								
	(A) 5	(B) 15	(C) 20	(D) 40	(E) NOTA				
14.	14. In a quadrilateral <i>ABCD</i> with $\angle ABC = 90^{\circ}$, points <i>M</i> , <i>N</i> are the midpoints of <i>AD</i> , <i>CD</i> respectively. Given that $AB = 6$, $BC = 10$, the area of <i>ABCD</i> is 50, find the area of $\triangle BMN$.								
	(A) 15	(B) 20	(C) 25	(D) 22.5	(E) NOTA				
15.	15. Consider a parallelogram <i>ABCD</i> , circle ω with a radius of 4 is tangent to <i>AB</i> , <i>BC</i> , <i>AD</i> . The tangent from <i>C</i> (other than <i>BC</i>) to ω meets <i>AD</i> at <i>M</i> . Given <i>AB</i> = <i>MC</i> , find the length of <i>BC</i> when <i>AB</i> = 10.								
	(A) 14	(B) 16	(C) 18	(D) 20	(E) NOTA				

16. In parallelogram ABCD, AB = 8, AD = 10. Circle ω is tangent to AB, BC, AD. Denote M as the midpoint of BC, DM is tangent to ω . Denote d as the length of the diameter of ω , find d^2 .

(A) 12	(B) 24	(C) 48	(D) 54	(E) NOTA
(11) 12	$(D) \Delta I$	(\mathbf{C}) 10	(D) 01	

17. Which of the following must have a circumcircle?

(A) rhombus	(B) isosceles trape-	(C) kite	(D) hexagon	(E) NOTA
	zoid			

18. Given rhombus *ABCD* with *AC* = *BC*. *E* is the intersection of *AC*, *BD*. Denote the midpoint of *AE* as *Q*, and define a moving point *S* on segment *BD*. Find the minimum value of $QS + \frac{BS}{2}$ if *AC* = 8. The answer is in the radical form of \sqrt{p} , find *p*.

(A) 12 (B) 18 (C) 20 (D) 27 (E) NOTA

- **19.** Consider trapezoid *ABCD* with $\angle A = \angle B = 90^{\circ}$. Point *M* is selected on segment *BC* such that *AMCD* is a rhombus with AD = MD = 8. Find the area of *ABCD*.
 - (A) $40\sqrt{3}$ (B) $36\sqrt{3}$ (C) $50\sqrt{3}$ (D) $64\sqrt{3}$ (E) NOTA

20. Consider triangle *ABC* with AB = 10, BC = 12. Point *O* lies inside the triangle and circle ω centered at *O* is tangent to *AB*, *AC* at points *D*, *E* and ω meets *BC* at points *F*, *G*. The radius of ω when *DEFG* is a rectangle can be written in the simplest form of $\frac{p}{q}$, find p + q.

(A) 97 (B) 35 (C) 117 (D) 77 (E) NOTA

21. Let \overline{AB} and \overline{CD} be two parallel external tangents to circle ω , such that \overline{AB} is tangent to ω at A, \overline{CD} is tangent to ω at C, and \overline{AC} does not intersect \overline{BD} . If \overline{BD} is also tangent to ω at a point E. Given AB = 4, and CD = 9, then compute the area of ω .

(A) 36π (B) 18π (C) 54π (D) 72π (E) NOTA

22. Consider $\triangle ABC$ with AB = 13, BC = 14, AC = 15 and incircle ω . $P \neq B$, $Q \neq C$ on AB, AC such that PQ is tangent to ω and PQ||BC. The length of PQ can be written in the simplest form of $\frac{m}{n}$, compute m + n.

(A) 19 **(B)** 20 **(C)** 29 **(D)** 17 **(E)** NOTA

- **23.** Consider isosceles trapezoid *ABCD* with AB = 38, CD = 34. Point *P* is selected on segment *AB* such that $\angle CPD = 90^{\circ}$, AP = 11. Compute the area of the trapezoid.
 - **(A)** 270 **(B)** 360 **(C)** 540 **(D)** 600 **(E)** NOTA
- **24.** Consider quadrilateral *ABCD* with AB = 3, BC = 7, CD = 9, AD = 8. Given the length of *AC* is an integer, find the sum of the possible lengths of *AC*.
 - **(A)** 21 **(B)** 49 **(C)** 28 **(D)** 35 **(E)** NOTA

25. Consider parallelogram $ABCD(\angle B < 90^\circ)$ with AB = 3, BC = 4. Rotate the parallelogram about A to AB'C'D', B' lies on segment BC and C'DD' lie on the same line. If BB' = 1 and B'C' meets CD at E, find CE.

(A) $\frac{5}{3}$ (B) $\frac{3}{2}$ (C) $\frac{9}{8}$ (D) $\frac{7}{4}$ (E) NOTA

- **26.** Consider an unit regular pentagon *ABCDE*. Unit circles centered at *A*, *B* intersect at point *Q* inside *ABCDE*. Find $\angle BQC$ in degrees.
 - **(A)** 54 **(B)** 60 **(C)** 66 **(D)** 72 **(E)** NOTA

27. Point *E* lies inside square *ABCD* such that CE = 6, DE = 8, $\angle AEB + \angle CED = 180^{\circ}$. The sum of all possible areas of *ABCD* can be written in the form of $a\sqrt{b} + c\sqrt{d} + e$ for integers *a*, *b*, *c*, *d*, *e*, and *b*, *d* are square-free. Compute a + b + c + d + e.

- (A) 147 (B) 153 (C) 165 (D) 173 (E) NOTA
- **28.** Consider convex quadrialteral *ABCD* with AB = 8, AD = 10, BC = 14, $\angle B = \angle C = \arccos(\frac{1}{4})$. Find the the sum of the possible lengths of *CD*.
 - **(A)** 21 **(B)** 13 **(C)** 19 **(D)** 23 **(E)** NOTA
- **29.** In convex quadrilateral *ABCD*, *AB* = 4, *BC* = 6, *AC* = 5, *BD* bisects $\angle ABC$ and $\angle ABD = \angle CAD$, find the value of AD^2 .
 - (A) 6 (B) 8 (C) 12 (D) 15 (E) NOTA
- **30.** If the perimeter of the square and the area of the square are numerically the same, find the side-length of the square.
 - (A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA