Answer Ke	y:		
1. A	-		
2. D			
3. B			
4. D			
5. B			
6. A			
7. E			
8. D			
9. C			
10. B			
11. C			
11. C 12. C			
12. C 13. C			
13. C 14. B			
14. B 15. B			
13. D			
16. C			
17. B			
18. D			
19. A			
20. D			
21. A			
22. D			
23. C			
24. D			
25. C			
26. C			
20. C 27. B			
27. D 28. A			
20. R 29. B			
29. D 30. D			
50. D			

Solutions:

- **1. A** : The area is $AC^2/2 = 200$
- 2. D : Since rectangles have congruent diagonals, so the area is maximized when two diagonals are perpendicular to each other, and it is identical to question.
- **3. B**: Since all the sides of a rhombus are the same, so *ABC* is equilateral. The area is $2[ABC] = 2 \cdot \frac{\sqrt{3}}{4} \cdot 6^2 = 18\sqrt{3}$
- 4. **D**: Since AB = BC = BE, $\angle BEC = (180 \angle EBC)/2 = 75$ degrees.
- **5. B** : Since *AC*, *CF* are diagonals of the squares, so they are perpendicular to each other. The desire area is $2\sqrt{2} \cdot 5\sqrt{2}/2 = 10$
- 6. A: The perpendicular statement indicates the shape is a rhombus. Since $BD = \sqrt{3}AC, \angle BAD = 60^{\circ}$. The area is $\frac{25\sqrt{3}}{2}$
- 7. **E** : Notice $\angle C = 180^\circ \angle A/2$, so *B*, *C*, *D* lie on the circle with center *A*, the answer is just 25.
- 8. D: *EFGH* is a square, the distance from each vertex to the center of the square is $\frac{1}{2} + \frac{\sqrt{3}}{2}$, so the square of the side length is $2(\frac{1+\sqrt{3}}{2})^2 = 2 + \sqrt{3}$
- 9. C: *IJKL* is a square, The distance from *I* to *AB* is $\frac{1}{2\sqrt{3}}$, the distance from the center of *ABCD* to *AB* is $\frac{1}{2}$ so $IJ^2 = 2(\frac{1}{2\sqrt{3}} + \frac{1}{2})^2 = \frac{2+\sqrt{3}}{3}$
- **10.** B: Since *N* is the midpoint of minor arc *BC*, so *AF* bisects $\angle BAC$. Thus $\angle BAF = \angle AFC = \angle CAF$, $AC = CF = 5\sqrt{2}$
- **11. C**: The distances from *O* to *AD* and *AB* are both *r*, *OC* = *r*, so we have $\sqrt{2}(4 r) = r$, $r = 8 4\sqrt{2}$
- **12.** C :Since *M*, *N* are the midpoints, so BC = 2MN, so we have AM + AN + MN = 20, BM + CN + MN + BC = 25, since AM = BM, AN = CN, BC = 5, MN = 2.5, AM + AN = 20 2.5 = 17.5, the desired is 2(AM + AN) = 35
- **13.** C: Denote $\angle DCE = \alpha$. Since AE = AB, drop the foot from A to BE at F. We have $BF = EF; \angle ABE = (180 2\alpha)/2 = 90 \alpha, \angle CBE = \alpha = \angle FAB, CE \perp BE$. Since AB = BC, we conclude $\triangle AFB \cong \triangle BEC$, so we have BE = 4. So the desired value is $2^2 + 4^2 = 20$
- 14. **B**: [ABM] + [CNB] equals half the area of the whole quadrilateral, $[DMN] = \frac{1}{4}[ADC] = \frac{1}{4}(50 30) = 5$, The desired value equals to 50 5 25 = 20
- **15. B** : The distance from *B* to the foot of A-altitude to *BC* is $\sqrt{100-64} = 6$. Since it's an isosceles trapezoid, the distance from *C* to the foot of M-altitude is 6. By pitot, AM + BC = 20 = 2AM + 12, AM = 4, BC = 4 + 12 = 16.
- **16.** C: By pitot, DM = 5 + 10 8 = 7 Then by law of cosines, $\angle C = 60^\circ$, $r = 8 \cdot \sin 60^\circ = 4\sqrt{3}$, $d^2 = 48$

- **17. B**: *A*, *C* are not necessarily right and it is easy to give an example. D is not right as well, you could just extend some segments of a cyclic hexagon outside the circle.
- **18.** D: As $AC = BC, \angle ABC = 60^{\circ}$. $\frac{BS}{2}$ is the height from *S* to base *BC*. The desired value is attained when *QS* is perpendicular to *BC*, which leads to $3\sqrt{3}$ as the minimum value.
- **19.** $|\mathbf{A}|$: Notice that AM = AB = 8 and $\angle AMB = 60^{\circ}$ since the condition implies AMD is equilateral. Thus BM = 4, $AB = 4\sqrt{3}$, the area is $(8 + 12) \cdot 4\sqrt{3}/2 = 40\sqrt{3}$
- **20.** D: Since ω is tangent to *AB*, *AC*, we can conclude *AB* = *AC*. We can set BG = 3x, DG = 4x, DB = 5x. By symmetry, BG = CF = 3x, GE = 12 6x. By similar triangles, $DG^2 = BG \cdot GE$, $x = \frac{18}{17}$. The desired answer is $(10 5x) \cdot \frac{3}{4} = \frac{60}{17}$.
- **21.** [A]: Drop the feet from *B* to *CD* at *H*. Equal tangents from a point to a circle : AB = BE, CD = DE Pythagoras implies $BD^2 = BH^2 + DH^2$. As AC = BH, hence area is $(13^2 (9 4)^2)\pi/4 = 36\pi$
- **22.** \mathbf{D} : The inradius is 4, the altitude from A to PQ = 12 8 = 4. Similar triangle yields $\frac{4}{12} = \frac{PQ}{14}$, $PQ = \frac{14}{3}$.
- **23.** [C]: Drop the height from *C*, *D* to *AB*, denote the feet as *X*, *Y*. We could see BX = AY = (38 34)/2 = 2, PY = 9, PX = 25. Since $\angle CPD = 90^\circ$, so $\triangle PDY \sim \triangle CPX$, PY/DY = CX/PX, $DY = CX = \sqrt{9 \cdot 25} = 15$, the area is $(34 + 38) \cdot 15/2 = 540$
- **24.** $[\mathbf{D}]$: By triangle inequality in $\triangle ABC$, $\triangle ACD$, we have 4 < AC < 10; 1 < AC < 17. So the possible lengths are 5, 6, 7, 8, 9 and that's 35.
- **25.** C: Note by rotation, we have $\triangle ABB' \sim \triangle ADD'$, $DD' = \frac{4}{3}$, $C'D = \frac{5}{3}$. Since $\triangle DEC' \sim \triangle B'EC$, $\frac{C'D}{CB'} = \frac{5}{9}$. Assume CE = x, $C'E = \frac{5x}{9}$. So we have $\frac{3-x}{4-5x/9} = \frac{5}{9}$, we have $x = \frac{9}{8}$
- **26.** $|\mathbf{C}|$: $AB = AQ = BQ = 1, \angle ABQ = 60^{\circ}, \angle CBQ = 48^{\circ}; BC = BQ, \angle BQC = (180 48)/2 = 66^{\circ}$
- **27.** $[\mathbf{B}]$: Denote the side length of the square as *l*. Translate $\triangle AED$ to $\triangle BFC$, EF = BC = l. Since $\angle AED + \angle BEC = 180^\circ \implies BECF$ is a cyclic quadrilateral. Thus, *BFCE* is an isosceles trapezoid due to congruent diagonals. We have BE = CF = 6.

By British Flag theorem, we have $AE^2 + 64 = DE^2 + 36$; DE = CF = 6, $BE = 2\sqrt{2}$. By Ptolemy, $l^2 = BE \cdot CF + CE \cdot BF = 16\sqrt{2} + 36$

Second case: when BE = DE = 8, $AE = 2\sqrt{23} \implies l^2 = 12\sqrt{23} + 64$. Sum up to attain $100 + 12\sqrt{23} + 16\sqrt{2}$

- **28.** [A]: Select point *E* on segment *BC* such that AB = AE. Since $\arccos(B) = \frac{1}{4}$, BD = 4, CE = 10 = AD. As $\angle B = \angle C$, $\angle AEB = \angle B$, we conclude *AE* is parallel to *CD* and *ADCE* is an isosceles trapezoid. We could thus have $CD = 10 \cdot \frac{1}{4} \cdot 2 + 8 = 13$. The other case is when *ADCE* is a parallelogram, which yields 8, the answer is 21.
- **29. B**: From $\angle ABD = \angle CBD = \angle CAD, A, B, C, D$ are concyclic and AD = CD. Let AC, BD meet at E. Angle bisector theorem implies AE = 2, CE = 3, by Stewart, $BE^2 = (48 + 72)/5 6 = 18, BE = 3\sqrt{2}$. Then, by the power of point, $DE \cdot BE = AE \cdot CE, DE = \sqrt{2}$. We finish with Ptolemy, $6AD + 4CD = 5 \cdot 4\sqrt{2}, AD = CD = 2\sqrt{2}, AD^2 = 8$

30. D: $x^2 = 4x, x = 4$