P What is the length of the segment of the line y + 7x = 26 which lies inside the circle $x^2 + y^2 - 2y = 24$?

Solution:
$$y=26-7x$$
, $x^2+y^2-2y-24=0$ by substitution $x^2+(26-7x)^2-2(26-7x)-24=0$; $50x^2-350x+600=0$; $x^2-7x+12=0$; $(x-3)(x-4)=0$; $x=3$ then $y=5$; $x=4$ then $y=-2$ d((3, 5), (4, -2)) = $\sqrt{(4-3)^2+(-2-5)^2}=\sqrt{50}=5\sqrt{2}$

1. The equation $x^6 + 5x^5 + 5x^4 - 7x^3 - 9x^2 + 3x + 2 = 0$ has 2 rational roots and 4 irrational roots. Find the sum of the irrational roots.

Solution: The sum of the roots of the given equation is $\frac{-b}{a}$. Checking the possible rational roots ± 2 , ± 1 you'll find $x^6 + 5x^5 + 5x^4 - 7x^3 - 9x^2 + 3x + 2 = 0$ (x-1)(x+2)($x^4 + 4x^3 + 3x^2 - 2x - 1$)=0 Then the sum of the 4 irrational roots is -4.

2. Solve for x:
$$\sum_{r=0}^{4} {4 \choose r} 5^{4-r} x^r = 64$$

Solution: In sigma notation $(a+b)^n = \sum_{r=0}^n \binom{n}{r} a^{n-r} b^r$ therefore, $\sum_{r=0}^4 \binom{4}{r} 5^{4-r} x^r = 64$ is the same as $(x+5)^4 = 64$; $x = -5 \pm 2\sqrt{2}$

3. The equation $5^x + \frac{10}{5^x} = 7$ has x=1 as a solution. Find another solution.

Solution:

$$5^{x} + \frac{10}{5^{x}} = 7 \quad \therefore \quad (5^{x})^{2} - 7(5^{x}) + 10 = 0 \quad \therefore \quad (5^{x} - 5)(5^{x} - 2) = 0 \quad x = 1; \ 5^{x} = 2 \quad x = \log_{5} 2 = \frac{\log 2}{\log 5}$$

4. If Cos (9x) – Cos (7x) = 0, find the number of solutions for x, where $0 < x \le \frac{\pi}{2}$.

Solution: Cos (9x) - Cos (7x) = 0; Cos (8x + x) - Cos (8x - x) = 0; Cos (8x) Cos x - Sin (8x) Sin x - [Cos (8x) Cos x + Sin (8x) Sin x] = 0

-2Sin (8x) Sin x = 0; Sin (8x) Sin x = 0; 8x = π , 2π , 3π , 4π ; $x = \frac{\pi}{8}, \frac{\pi}{4}, \frac{3\pi}{8}, \frac{\pi}{2}$, so the number of solutions is 4.

5. What is the coefficient of x^2 in the expansion of $\left(4x^2 + \frac{1}{2x}\right)^7$?

Solution:
$$\left(4x^2 + \frac{1}{2x}\right)^7 = \dots + {7 \choose 4} \left(4x^2\right)^3 \left(\frac{1}{2x}\right)^4 + \dots \frac{7!}{4!3!} \left(2^6\right) \left(\frac{1}{2^4}\right) x^2 = 140x^2$$
,

so coefficient is 140.

6. What expression must be used in order to rationalize the denominator in $\frac{1}{3-\sqrt[3]{2}}$?

Solution: $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ where a = 3 and $b = \sqrt[3]{2}$. The numerator and denominator must be multiplied by $9 + 3\sqrt[3]{2} + \sqrt[3]{4}$ in order to get $a^3 - b^3 = (3)^3 - (\sqrt[3]{2})^3 = 27-2=25$

7. If $N^{\log_2 3} = 8$, what is $N^{(\log_2 3)^2}$?

$$Solution: \ \ N^{log_23} = 8 \qquad \left\lceil N^{log_23} \right\rceil^{log_23} = 8^{log_23} \quad N^{(log_23)^2} = 2^{3log_23} \quad N^{(log_23)^2} = 2^{log_23^3} = 27$$

8. Find the slope(s) of the line(s) formed when graphing y = |2x - 4| + |4 - x|?

Solution:
$$y = |2x - 4| + |4 - x| = \begin{cases} -3x + 8, & \text{if } x \le 2 \\ x, & \text{if } 2 \le x \le 4 \end{cases}$$
 where $x = -3$, 1, 3 $x = -3$, if $x = -3$, 1, 3

9. Find x if $\sqrt{5+2\sqrt{6}} - \sqrt{5-2\sqrt{6}} = x\sqrt{x}$.

Solution: Squaring both sides of
$$\sqrt{5+2\sqrt{6}} - \sqrt{5-2\sqrt{6}} = x\sqrt{x}$$
 you get $5+2\sqrt{6}-2\sqrt{25-24}+5-2\sqrt{6} = x^3$ $8=x^3$ $x=2$

10. Solve $x^4 - x^3 - 19x^2 + 49x - 30 < 0$. State your final answer in interval notation.

Solution: The possible rational roots are $\pm (1,2,3,5,6,10,15,30)$. Using synthetic division, $x^4 - x^3 - 19x^2 + 49x - 30 < 0 \Rightarrow (x+5)(x-1)(x-2)(x-3) < 0 +++|-----|++|---| (-5, 1) <math>\cup$ (2,3)