Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #0	Alpha Ciphering Question #0
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#0 Ciphering - Alpha Division	
MA® National Convention 201	3

If $7^x = 4$, find the value of 343^x .

#0 Ciphering – Alpha Division MA⊕ National Convention 2013

If $7^x = 4$, find the value of 343^x .

#0 Ciphering – Alpha Division MA⊚ National Convention 2013

If $7^x = 4$, find the value of 343^x .

#0 Ciphering - Alpha Division MA⊚ National Convention 2013

If $7^x = 4$, find the value of 343^x .

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #1	Alpha Ciphering Question #1
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#1 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sqrt{5+6+7+8+9+10+11+12+13}$$

#1 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sqrt{5+6+7+8+9+10+11+12+13}$$

#1 Ciphering - Alpha Division MA⊖ National Convention 2013

Evaluate:

$$\sqrt{5+6+7+8+9+10+11+12+13}$$

#1 Ciphering - Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sqrt{5+6+7+8+9+10+11+12+13}$$

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #2	Alpha Ciphering Question #2
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#2 Ciphering – Alpha Division MA⊖ National Convention 2013

Let $i = \sqrt{-1}$.

Find the absolute value of 65 - 72i.

#2 Ciphering – Alpha Division MA⊕ National Convention 2013

Let $i = \sqrt{-1}$.

Find the absolute value of 65 - 72i.

#2 Ciphering – Alpha Division MA⊚ National Convention 2013

Let $i = \sqrt{-1}$.

Find the absolute value of 65 - 72i.

#2 Ciphering – Alpha Division MA® National Convention 2013

Let $i = \sqrt{-1}$.

Find the absolute value of 65 - 72i.

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #3	Alpha Ciphering Question #3
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#3 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate: 100 sin² 9300°

#3 Ciphering - Alpha Division MA⊕ National Convention 2013

Evaluate: 100 sin² 9300°

#3 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate: 100 sin² 9300°

#3 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate: 100 sin² 9300°

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #4	Alpha Ciphering Question #4
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#4 Ciphering – Alpha Division MA⊕ National Convention 2013

Let ABCD be a parallelogram. If P is a point inside ABCD such that the area of triangle PAD is 12 square meters and the area of triangle PBC is 6 square meters, find the area of ABCD. Express your answer in square meters.

#4 Ciphering – Alpha Division MA⊕ National Convention 2013

Let ABCD be a parallelogram. If P is a point inside ABCD such that the area of triangle PAD is 12 square meters and the area of triangle PBC is 6 square meters, find the area of ABCD. Express your answer in square meters.

#4 Ciphering – Alpha Division MA⊚ National Convention 2013

Let ABCD be a parallelogram. If P is a point inside ABCD such that the area of triangle PAD is 12 square meters and the area of triangle PBC is 6 square meters, find the area of ABCD. Express your answer in square meters.

#4 Ciphering – Alpha Division MA⊕ National Convention 2013

Let ABCD be a parallelogram. If P is a point inside ABCD such that the area of triangle PAD is 12 square meters and the area of triangle PBC is 6 square meters, find the area of ABCD. Express your answer in square meters.

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #5	Alpha Ciphering Question #5
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#5 Ciphering - Alpha Division

MAO National Convention 2013

A sequence is defined recursively as $a_1 = 1$ and for $n \ge 1$,

$$a_{n+1} = a_n + 8n.$$

Evaluate:
$$\sqrt{a_{2013}}$$

#5 Ciphering - Alpha Division

MAO National Convention 2013

A sequence is defined recursively as $a_1 = 1$ and for $n \ge 1$,

$$a_{n+1} = a_n + 8n.$$

Evaluate:
$$\sqrt{a_{2013}}$$

#5 Ciphering - Alpha Division

MAO National Convention 2013

A sequence is defined recursively as $a_1 = 1$ and for $n \ge 1$,

$$a_{n+1} = a_n + 8n.$$

Evaluate: $\sqrt{a_{2013}}$

#5 Ciphering - Alpha Division

MAO National Convention 2013

A sequence is defined recursively as $a_1 = 1$ and for $n \ge 1$,

$$a_{n+1} = a_n + 8n.$$

Evaluate: $\sqrt{a_{2013}}$

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #6	Alpha Ciphering Question #6
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#6 Ciphering - Alpha Division MA⊕ National Convention 2013

If $\sin(2\theta) = .69$, where $0 < \theta < \pi/2$, find the value of $\sin \theta + \cos \theta$ and **express your answer as a decimal.**

#6 Ciphering – Alpha Division MA® National Convention 2013

If $\sin(2\theta) = .69$, where $0 < \theta < \pi/2$, find the value of $\sin \theta + \cos \theta$ and **express your answer as a decimal.**

#6 Ciphering – Alpha Division MA⊕ National Convention 2013

If $\sin(2\theta) = .69$, where $0 < \theta < \pi/2$, find the value of $\sin \theta + \cos \theta$ and **express your answer as a decimal.**

#6 Ciphering – Alpha Division MA⊕ National Convention 2013

If $\sin(2\theta) = .69$, where $0 < \theta < \pi/2$, find the value of $\sin \theta + \cos \theta$ and **express your answer as a decimal.**

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #7	Alpha Ciphering Question #7
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#7 Ciphering – Alpha Division MA⊕ National Convention 2013

A right triangle has hypotenuse of length 17. A circle is inscribed in this triangle, splitting the hypotenuse into lengths of 5 and 12 at the point of tangency. Find the area of the triangle.

#7 Ciphering – Alpha Division MA⊕ National Convention 2013

A right triangle has hypotenuse of length 17. A circle is inscribed in this triangle, splitting the hypotenuse into lengths of 5 and 12 at the point of tangency. Find the area of the triangle.

#7 Ciphering – Alpha Division MA⊕ National Convention 2013

A right triangle has hypotenuse of length 17. A circle is inscribed in this triangle, splitting the hypotenuse into lengths of 5 and 12 at the point of tangency. Find the area of the triangle.

#7 Ciphering – Alpha Division MA⊕ National Convention 2013

A right triangle has hypotenuse of length 17. A circle is inscribed in this triangle, splitting the hypotenuse into lengths of 5 and 12 at the point of tangency. Find the area of the triangle.

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #8	Alpha Ciphering Question #8
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#8 Ciphering – Alpha Division MA⊚ National Convention 2013

Define the *flexible factorial* $n_a!$ for positive integers n and a as

$$n_a! = n(n-a)(n-2a) \dots (n-ka),$$

where k is the greatest integer such that ka < n.

If
$$(18_2!)x = 72_8!$$
, find $\log_2 x$.

#8 Ciphering – Alpha Division MA⊕ National Convention 2013

Define the *flexible factorial* n_a ! for positive integers n and a as

$$n_a! = n(n-a)(n-2a)...(n-ka),$$

where k is the greatest integer such that ka < n.

If
$$(18_2!)x = 72_8!$$
, find $\log_2 x$.

#8 Ciphering – Alpha Division MA⊚ National Convention 2013

Define the *flexible factorial* $n_a!$ for positive integers n and a as

$$n_a! = n(n-a)(n-2a) \dots (n-ka),$$

where k is the greatest integer such that ka < n.

If
$$(18_2!)x = 72_8!$$
, find $\log_2 x$.

#8 Ciphering – Alpha Division MA⊚ National Convention 2013

Define the *flexible factorial* n_a ! for positive integers n and a as

$$n_a! = n(n-a)(n-2a)...(n-ka),$$

where k is the greatest integer such that ka < n.

If
$$(18_2!)x = 72_8!$$
, find $\log_2 x$.

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #9	Alpha Ciphering Question #9
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#9 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sum_{n=0}^{360} \sin^2 n^\circ = \sin^2 0^\circ + \sin^2 1^\circ + \dots + \sin^2 360^\circ$$

#9 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sum_{n=0}^{360} \sin^2 n^\circ = \sin^2 0^\circ + \sin^2 1^\circ + \dots + \sin^2 360^\circ$$

#9 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sum_{n=0}^{360} \sin^2 n^\circ = \sin^2 0^\circ + \sin^2 1^\circ + \dots + \sin^2 360^\circ$$

#9 Ciphering – Alpha Division MA⊕ National Convention 2013

Evaluate:

$$\sum_{n=0}^{360} \sin^2 n^\circ = \sin^2 0^\circ + \sin^2 1^\circ + \dots + \sin^2 360^\circ$$

Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:
Alpha Ciphering Question #10	Alpha Ciphering Question #10
Name:	Name:
ID#:	ID#:
School:	School:
Answer:	Answer:

#10 Ciphering - Alpha Division MA⊕ National Convention 2013

If *f* is an integer-valued function such that

$$f(f(x)) = f(x+2) - 3$$

for all integers x, find the value of f(5) given that f(1) = 4 and f(4) = 3.

#10 Ciphering - Alpha Division MA⊕ National Convention 2013

If *f* is an integer-valued function such that

$$f(f(x)) = f(x+2) - 3$$

for all integers x, find the value of f(5) given that f(1) = 4 and f(4) = 3.

#10 Ciphering - Alpha Division MA⊕ National Convention 2013

If *f* is an integer-valued function such that

$$f(f(x)) = f(x+2) - 3$$

for all integers x, find the value of f(5) given that f(1) = 4 and f(4) = 3.

#10 Ciphering - Alpha Division MA⊕ National Convention 2013

If *f* is an integer-valued function such that

$$f(f(x)) = f(x+2) - 3$$

for all integers x, find the value of f(5) given that f(1) = 4 and f(4) = 3.