ANSWERS

(1) CAAAB	(6) BDDAB	(11) CDDAA
(16) DBAAC	(21) DBCBC	(26) DCBCC

SOLUTIONS

1. We have

$$\sqrt{-1} \cdot \sqrt{-3} \cdot \sqrt{-11} \cdot \sqrt{-61} = i \cdot i \cdot i \cdot i \cdot \sqrt{1 \cdot 3 \cdot 11 \cdot 61}$$
$$= i^4 \sqrt{2013}$$
$$= \sqrt{2013}, \quad \boxed{C}.$$

2. The powers of i cycle between i,-1,-i, and 1. Thus, we have

$$i^{2013} = \left(i^4\right)^{503} \cdot i$$
$$= i, \quad \boxed{A.}$$

3. The absolute value of the entire fraction is the ratio of the absolute values of the numerator and denominator. Using this, we have

$$\left| \frac{3+4i}{5+12i} \right| = \frac{\left| 3+4i \right|}{\left| 5+12i \right|}$$
$$= \frac{5}{13}, \quad \boxed{A.}$$

4. We let x equal the expression we wish to evaluate. With a substitution, we obtain $\frac{i}{i} + \sqrt{i} +$

$$x = \sqrt{\frac{i}{4} + \sqrt{\frac{i}{4} + \sqrt{\frac{i}{4} + \cdots}}} = \sqrt{\frac{i}{4} + x}$$
. Solving this equation with the quadratic formula gives

$$x^2 - x - \frac{i}{4} = 0 \Rightarrow x = \frac{1 \pm \sqrt{1+i}}{2}.$$

Now, we must evaluate $\sqrt{1+i}$. We can write this in cis form as $1+i=\sqrt{2}\mathrm{cis}\left(\frac{\pi}{4}\right)$. To take the square root of this, we utilize de Moivre's Theorem to obtain

$$\left[\sqrt{2}\operatorname{cis}\left(\frac{\pi}{4}\right)\right]^{1/2} = 2^{1/4}\operatorname{cis}\left(\frac{1}{2}\left(\frac{\pi}{4} + 2\pi k\right)\right), k = 0, 1$$
$$= 2^{1/4}\operatorname{cis}\left(\frac{\pi}{8} + \pi k\right), k = 0, 1.$$

Combining this with the rest of the solution gives

$$x = \frac{1 \pm 2^{1/4} \operatorname{cis}\left(\frac{\pi}{8} + \pi k\right)}{2}, k = 0, 1$$
$$= \frac{1}{2} + 2^{-3/4} \operatorname{cis}\left(\frac{\pi}{8} + \pi k\right), k = 0, 1, \boxed{A}.$$

5. Note that $Re(cis\theta) = cos\theta$ and $Im(cis\theta) = sin\theta$. Thus, we have

$$\frac{\prod_{n=1}^{45} \text{Re} \left[\text{cis}((2n-1)^{\circ}) \right]}{\prod_{n=1}^{45} \text{Im} \left[\text{cis}(2(2n-1)^{\circ}) \right]} = \frac{\cos 1^{\circ} \cos 3^{\circ} \cdots \cos 89^{\circ}}{\sin 2^{\circ} \sin 6^{\circ} \cdots \sin 178^{\circ}}$$

$$= \frac{\cos 1^{\circ} \cos 3^{\circ} \cdots \cos 89^{\circ}}{(2 \sin 1^{\circ} \cos 1^{\circ})(2 \sin 3^{\circ} \cos 3^{\circ}) \cdots (2 \sin 89^{\circ} \cos 89^{\circ})}$$

$$= \frac{1}{2^{45}} \left(\frac{1}{\sin 1^{\circ} \sin 3^{\circ} \cdots \sin 89^{\circ}} \right).$$

The bottom expression can be written as

$$sin 1^{\circ} sin 3^{\circ} \cdots sin 89^{\circ} = \frac{\sin 1^{\circ} sin 2^{\circ} sin 3^{\circ} \cdots sin 89^{\circ}}{\sin 2^{\circ} sin 4^{\circ} \cdots sin 88^{\circ}} \\
= \frac{\sin 1^{\circ} sin 2^{\circ} sin 3^{\circ} \cdots sin 89^{\circ}}{(2 sin 1^{\circ} cos 1^{\circ})(2 sin 2^{\circ} cos 2^{\circ}) \cdots (2 sin 44^{\circ} cos 44^{\circ})} \\
= \frac{1}{2^{44}} \left(\sin 45^{\circ} \frac{\sin 46^{\circ} \sin 47^{\circ} \cdots \sin 89^{\circ}}{\cos 1^{\circ} cos 2^{\circ} \cdots cos 44^{\circ}} \right) \\
= \frac{\sqrt{2}}{2^{45}} \left(\frac{\sin 46^{\circ} \sin 47^{\circ} \cdots \sin 89^{\circ}}{\sin 89^{\circ} \sin 88^{\circ} \cdots \sin 46^{\circ}} \right) \\
= 2^{-89/2}.$$

where we have used the fact that $\sin(90^{\circ} - \theta) = \cos \theta$. Our answer is then

$$2^{-45} \left(\frac{1}{2^{-89/2}} \right) = 2^{-1/2}, \ \boxed{B.}$$

- 6. The powers of i contain two sets of numbers that are additive inverses of each other, namely (1,-1) and (i,-i). Thus the only sets of four numbers that will satisfy a=0 are permutations of either (1,1,-1,-1), (i,i,-i,-i), and (i,-i,1,-1). The first two have $\binom{4}{2}=6$ distinct arrangements each, while the last has 4!=24 total arrangements, giving 2(6)+24=36 overall. There are $4^4=256$ possibilities, giving a probability of $\frac{36}{256}=\frac{9}{64}$, \boxed{B} .
- 7. The solutions to the equation z_k form a hexagon in the complex plane, similar to the 6th roots of unity, except the side length of the hexagon is $\sqrt[6]{729} = 3$. Thus $|z_3 z_6|$ is equal to the distance between two diagonally opposite points on the hexagon. This is simply 2(3) = 6, \boxed{D} .
- 8. We have $v_1 = \langle a, b \rangle$ and $v_2 = \langle c, d \rangle$, giving $v_1 \cdot v_2 = ac + bd$. Intuition would lead us to try $\operatorname{Re}(z \cdot w) = ac bd$. This, however, is the conjugate of what we wish to obtain. Naturally, we would then take the conjugate of either z or w. This gives us $\operatorname{Re}(\overline{z} \cdot w) = \operatorname{Re}((ac + bd) + i(ad bc)) = ac + bd$, \boxed{D} .

9. Going by the definition, we have

10. We have

$$2(\operatorname{cis}43^{\circ} \otimes \operatorname{cis}35^{\circ}) = 2 \cos 35^{\circ} \operatorname{cis}43^{\circ}$$

$$= 2 \cos 35^{\circ} (\cos 43^{\circ} + i \sin 43^{\circ})$$

$$= 2 \cos 35^{\circ} \cos 43^{\circ} + i (2 \cos 35^{\circ} \sin 43^{\circ})$$

$$= (\cos(43^{\circ} + 35^{\circ}) + \cos(43^{\circ} - 35^{\circ})) + i (\sin(43^{\circ} + 35^{\circ}) + \sin(43^{\circ} - 35^{\circ}))$$

$$= (\cos 78^{\circ} + i \sin 78^{\circ}) + (\cos 8^{\circ} + i \sin 8^{\circ})$$

$$= \operatorname{cis}78^{\circ} + \operatorname{cis}8^{\circ}.$$

Thus, we have $\theta \varphi = (78)(8) = 624$, B.

- 11. Note that we can rewrite the equation as $(a-6)^2 + (b-3)^2 = 64$, or the equation for a circle. If we were to convert z to the Cartesian plane, we would simply write z = (x, y) = (a, b). Hence, R is a circle with radius 8, and thus has an area of $8^2 = 64\pi = \boxed{C}$.
- 12. Let z = a + bi. Then we have

$$|z-|z|| = |a+bi-|a+bi||$$

$$= |a+bi-\sqrt{a^2+b^2}|$$

$$= |(a-\sqrt{a^2+b^2})+bi|$$

$$= \sqrt{a^2-2a\sqrt{a^2+b^2}+(a^2+b^2)+b^2}$$

$$= \sqrt{2(a^2+b^2)-2a\sqrt{a^2+b^2}}.$$

Now, since $|z| = \sqrt{a^2 + b^2}$, this becomes

$$\sqrt{2|z|^2 - 2a|z|} = \sqrt{2}$$

$$\Rightarrow |z|^2 - a|z| - 1 = 0.$$

Using the quadratic formula, we solve for |z| as $|z| = \frac{a \pm \sqrt{a^2 + 4}}{2}$. Since $\sqrt{a^2 + 4} > 2$, we take $|z| = \frac{a + \sqrt{a^2 + 4}}{2}$, \boxed{D} .

13. We have

$$v_1 \cdot v_2 = x(1+i) + y(3+2i)$$

= $(x+3y) + i(x+2y)$
= $5+6i$.

This gives us the systems of equations

$$x + 3y = 5$$
$$x + 2y = 6$$

which we solve as (x, y) = (8, -1), which gives x + y = 7, \boxed{D} .

14. We have
$$B = A - \lambda I = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \begin{pmatrix} 3 - \lambda & -2 \\ 4 & -1 - \lambda \end{pmatrix}$$
. Thus,
$$\det(B) = (3 - \lambda)(-1 - \lambda) - (-2)(4)$$
$$= -3 - 3\lambda + \lambda + \lambda^2 + 8$$
$$= \lambda^2 - 2\lambda + 5$$
$$= 0.$$

Solving gives
$$\lambda = \frac{2 \pm 4i}{2} = 1 \pm 2i$$
, A.

15. It is clear that each $f_n(x)$ will be a polynomial of degree 4, since the roots are the vertices of a square. Now, note that each set of roots is a rotation of $\frac{\pi}{4}$ radians counterclockwise from the previous set of roots and furthermore, each set of roots has $\frac{1}{\sqrt{2}}$ times the amplitude of the previous set of roots. We began with the fourth roots of unity, which are $\operatorname{cis}\left(\frac{\pi k}{2}\right)$, $0 \le k \le 3$. This means the nth set of roots are $\left(\frac{1}{\sqrt{2}}\right)^{n-1}\operatorname{cis}\left(\frac{\pi}{4}(n-1) + \frac{\pi k}{2}\right) = \left[\left(\frac{1}{4}\right)^{n-1}\operatorname{cis}\left(\pi(n-1)\right)\right]^{1/4}.$ Of course, we can write this as $x^4 = \left[\left(\frac{1}{4}\right)^{n-1}\operatorname{cis}\left(\pi(n-1)\right)\right] = (-1)^{n-1}\left(\frac{1}{4}\right)^{n-1} = \left(-\frac{1}{4}\right)^{n-1}.$ This implies that $f_n(x) = x^4 - \left(-\frac{1}{4}\right)^{n-1}.$

Thus we have

$$\sum_{n=1}^{\infty} f_n(0) = -\sum_{n=1}^{\infty} \left(-\frac{1}{4} \right)^{n-1} = -\frac{1}{1 + \frac{1}{4}} = -\frac{4}{5}, \quad \boxed{A}.$$

16. The function will not intersect the x-axis when it has imaginary roots. This requires that the discriminant be less than 0. We have

$$5^2 - (4)(k^2)(9) < 0 \Rightarrow k^2 > \frac{25}{36} \Rightarrow k \in \left(-\infty, -\frac{5}{6}\right) \cup \left(\frac{5}{6}, \infty\right), \boxed{D}.$$

17. Let the roots be $r_1, r_2, ..., r_{2013}$, where $r_1 = 1$. The sum of the roots taken two at a time can be written as $\sum_{cvc} r_i r_j$, $0 < i, j \le 2013, i \ne j$. This can be written as

$$\sum_{cyc} r_i r_j = \sum_{cyc} r_1 r_a + \sum_{cyc} r_b r_c = \sum_{cyc} r_a + \sum_{cyc} r_b r_c,$$

Since $r_1 = 1$. We can see that this summation contains both the sum of the roots and the sum of the roots taken two at a time of $g(x) = 1 + \sum_{n=1}^{2012} nx^n$. This is just

$$-\frac{2011}{2012} + \frac{2010}{2012} = -\frac{1}{2012}, \ B.$$

18. We proceed by casework. Our first case, a real result, can be achieved by rolling both real numbers or both imaginary numbers. Note that both the first and second subcases are symmetric – so the total expected value is

$$2\left(\frac{1}{36}\left[\left(4+5+6\right)\left(1+2+3\right)\right]\right) = 2 \times \frac{15 \cdot 6}{36} = 5.$$

Our second case, an imaginary result, is achieved when we multiply an imaginary number by a real number. The expected value of this is

$$-\frac{1}{36}\Big[\big(1+2+3\big)\big(1+2+3\big)+\big(4+5+6\big)\big(4+5+6\big)\Big]=-\frac{29}{4}.$$

The total expected value is $5 - \frac{29}{4} = -\$2.25$, A.

19. Writing the expression in cis form gives us

$$(1+i\sqrt{3})^{2013} = \left[2\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)\right]^{2013}$$
$$= 2^{2013} \left(\operatorname{cis}\left(\frac{\pi}{3}\right)\right)^{2013}$$
$$= 2^{2013}\operatorname{cis}\left(\frac{2013\pi}{3}\right)$$
$$= 2^{2013}\operatorname{cis}\pi$$
$$= -2^{2013}, \quad \boxed{A.}$$

20. Let the first term be a and a common ratio be r. If, at some point in the series, the nth term in the series equals the first, we have $a = ar^{n-1} \Rightarrow r^k = 1$, k = n-1. Thus the possible ratios are the nth roots of unity. There must be 50 of these roots in the second quadrant, or between 90° and 180° . Since the roots of unity are $\operatorname{cis}\left(\frac{2\pi k}{n}\right)$, for some x, we must have

$$\frac{360x}{k} < 90 \Rightarrow x < \frac{k}{4}$$

$$\frac{360(x+50)}{k} < 180 \Rightarrow x < \frac{k}{2} - 50$$

Subtracting the second from the first gives $\frac{k}{4} > 50 \Rightarrow k > 200$. Thus the smallest value of k is k = 201, which gives n = k + 1 = 201 + 1 = 202, $\boxed{\text{C}}$.

21. This is just

$$f(i) = 1 - \frac{i^2}{2!} + \frac{i^4}{4!}$$
$$= 1 + \frac{1}{2} + \frac{1}{24}$$
$$= \frac{37}{24}, \quad \boxed{D}.$$

22. Note that $\operatorname{cis} \theta_1 \operatorname{cis} \theta_2 = \operatorname{cis} (\theta_1 + \theta_2)$. Using this, we have

$$\prod_{\theta=1}^{2013} \operatorname{cis} \theta^{\circ} = \operatorname{cis1}^{\circ} \operatorname{cis2}^{\circ} \cdots \operatorname{cis2013}^{\circ}$$
$$= \operatorname{cis} \left(\frac{2013(2014)}{2} \right)$$
$$= \operatorname{cis} \left(1007 \cdot 2013 \right)^{\circ}, \ \overline{B}.$$

23. The plotted points form a spiral shape, composed of segments which we can treat as hypotenuses of right triangles for our purposes of calculating distance. Since the powers of i traverse the axes counterclockwise, each two set of consecutive points

along with the origin form a right triangle. For example, $z_1 = \sqrt{\frac{2}{2}}i^1 = i$, and

$$z_2 = \sqrt{\frac{3}{2}}i^2 = -\sqrt{3}$$
, giving $z_1 z_2 = \sqrt{1^2 + (\sqrt{3})^2} = 2$. In general, we have

$$z_k z_{k+1} = \sqrt{\binom{k+1}{2} + \binom{k+2}{2}}$$

$$= \sqrt{\frac{k(k+1)}{2} + \frac{(k+1)(k+2)}{2}}$$

$$= \sqrt{(k+1)^2}$$

$$= k+1.$$

Thus,

$$z_1 z_2 + z_2 z_3 + \dots + z_{2012} z_{2013} = 2 + 3 + \dots + 2013$$

$$= \frac{2013 \cdot 2014}{2} - 1$$

$$= 2027090.$$

Therefore, our answer is $2027090 \pmod{100} \equiv 90$, $\boxed{\text{C}}$.

24. Note that A is a 60° counterclockwise rotation matrix. So every $\frac{360^{\circ}}{60^{\circ}} = 6$ times we apply it, we simply return to the same vector. This means that

$$A^{37}z = A^{6(6)+1}z$$

$$= Az$$

$$= \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 3 \\ 4i \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} 3 - 4i\sqrt{3} \\ 3\sqrt{3} + 4i \end{pmatrix}, \boxed{B}.$$

25. We have

$$\sum_{n=1}^{k} n(n!) = \sum_{n=1}^{k} (n+1-1)(n!)$$

$$= \sum_{n=1}^{k} [(n+1)(n!) - n!]$$

$$= \sum_{n=1}^{k} [(n+1)! - n!]$$

$$= [(k+1)! - k!] + [k! - (k-1)!] + \dots + [2! - 1!]$$

$$= (k+1)! - 1$$

Thus, the sum becomes

$$\sum_{n=1}^{k} n \cdot n! + 1 = (k+1)! - 1 + 1 = (k+1)!,$$

and we have

$$\sum_{k=0}^{\infty} \frac{i^k}{(k+1)!} = \frac{1}{i} \sum_{k=0}^{\infty} \frac{i^{k+1}}{(k+1)!}$$
$$= \frac{1}{i} \left(\sum_{n=1}^{\infty} \frac{i^n}{n!} \right)$$
$$= -i(e^i - 1)$$
$$= -ie^i + i, \ \boxed{C}.$$

26. We can write f(x) as

$$f(x) = x^{2013} + x^{2012} + \dots + x + 1$$

$$= x^{2012}(x+1) + x^{2010}(x+1) + \dots + x^{2}(x+1) + (x+1)$$

$$= (x+1)(x^{2012} + x^{2010} + \dots + x^{2} + 1)$$

$$= (x+1)\left(x^{2010}(x^{2}+1) + \dots + (x^{2}+1)\right)$$

$$= (x+1)(x^{2}+1)(x^{2010} + x^{2008} + \dots + 1).$$

Thus, we know that f(x) has -1, i, and -i as roots. Since the powers of i cycle, we are only worried about the powers of i that come out to 1, or every fourth power. Note that R(1) = f(1) = 2014, by the Remainder theorem. Since we begin at k = 0, our answer is

$$2014 \left(\left| \frac{2013}{4} \right| + 1 \right) \pmod{100} \equiv 1015056 \pmod{100} \equiv 56, \ \boxed{D}.$$

27. The function in this problem is similar to the function given in Problem 26. We can write $f_n(x)$ as

$$f_n(x) = \sum_{j=0}^{2^{n-1}} x^j$$

$$= \sum_{j=0}^{2^{n-1}-1} \left(x^{2j+1} + x^{2j} \right)$$

$$= (1+x) \sum_{j=0}^{2^{n-1}-1} x^{2j}$$

$$= (1+x) \sum_{j=0}^{2^{n-2}-1} \left(x^{4j+2} + x^{4j} \right)$$

$$= (1+x)(1+x^2) \sum_{j=0}^{2^{n-2}-1} x^{4j}$$

$$\vdots$$

$$= (1+x) \left(1+x^2 \right) \cdots \left(1+x^{2^{n-1}} \right).$$

Solving
$$x^{2^{n-1}} = -1$$
 gives us $x = \operatorname{cis}\left(\frac{\pi}{2^{n-1}} + \frac{\pi k}{2^{n-2}}\right) \Rightarrow \psi_n = \left\{\frac{\pi}{2^{n-1}}, \frac{3\pi}{2^{n-1}}, \dots, \frac{\left(2^{n-1}-1\right)\pi}{2^{n-1}}\right\}$. Note

that the entire set ψ is a union of all ψ_i . The sum for a given ψ_n is

$$\frac{\pi}{2^{n-1}} \left(1 + 3 + \dots + \left(2^{n-1} - 1 \right) \right) = \frac{\pi}{2^{n-1}} \left(2^{n-2} \right)^2$$
$$= \frac{2^{2n-4}}{2^{n-1}} \pi$$
$$= 2^n \left(\frac{\pi}{8} \right).$$

Thus the entire sum (while accommodating for $x+1=0 \Rightarrow x=\operatorname{cis}(\pi)$) is

$$\pi + \frac{\pi}{8} (2^{1} + 2^{2} + \dots + 2^{n}) = \pi + \frac{\pi}{8} \left(\frac{2(2^{n} - 1)}{1} \right)$$
$$= \pi + \frac{\pi}{4} (2^{n} - 1).$$

Finally, we must find n such that

$$\pi + \frac{\pi}{4} (2^n - 1) > 2013\pi \Rightarrow 2^n - 1 > 8048 \Rightarrow n > \log_2 8049.$$

We can easily verify that the smallest such n is 12, $\boxed{\text{C}}$.

28. We know that $|z|^2 = m^2 + 9n^2$. Consider this modulo 8. Since the quadratic residues mod 8 are 0,1, and 4, the possible values of $|z|^2 \pmod{8}$ are

$$0 + 0 \equiv 0 \pmod{8}$$

$$0+1\equiv 1 \pmod{8}$$

$$0+4 \equiv 4 \pmod{8}$$

$$1+1 \equiv 2 \pmod{8}$$

$$1+4 \equiv 5 \pmod{8}$$

The answer choices, mod 8, are

$$2010 \equiv 2 \pmod{8}$$

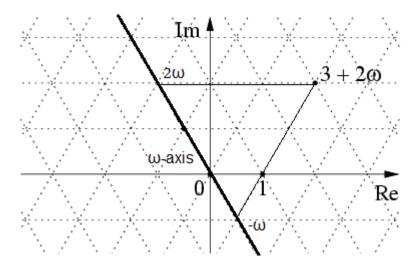
$$2011 \equiv 3 \pmod{8}$$

$$2012 \equiv 4 \pmod{8}$$

$$2013 \equiv 5 \pmod{8}$$

Thus our answer is 2011, B.

29. Our intuition for a new set of axes is based on the fact that the Eisenstein integers have an argument of 60° . Through some playing around, we can find the set of axes as shown below:



As we can see, the plotted points form an equilateral triangle with a side length of 3.

Thus, the area is
$$\frac{3^2\sqrt{3}}{4} = \frac{9\sqrt{3}}{4}$$
, $\boxed{\text{C.}}$

30. We have

$$z = a + b\omega$$

$$= a + b\left(\frac{1}{2}(-1 + i\sqrt{3})\right)$$

$$= \left(a - \frac{b}{2}\right) + i\left(\frac{b\sqrt{3}}{2}\right).$$

Thus,

$$|z| = \sqrt{\left(a - \frac{b}{2}\right)^2 + \left(\frac{b\sqrt{3}}{2}\right)^2}$$

$$= \sqrt{a^2 - ab + \frac{b^2}{4} + \frac{3b^2}{4}}$$

$$= \sqrt{a^2 - ab + b^2}$$

$$= \sqrt{\left(a - b\right)^2 + ab}, \quad \boxed{C}.$$