Question	Solution
P1.	The common ratio is $-\frac{42}{6} = -7$.
P2.	We have $r^2 = 13/\pi$, so $A = \pi r^2 = 13$.
Р3.	The odds against E is the ratio of the probability of E not happening to the probability of E happening, $\frac{1-5/6}{5/6} = \frac{1}{5}$.
P4.	For acute angle θ , if $\sin \theta = 3/5$, then $\cos \theta = 4/5$, so $\sec \theta = 5/4$.
P5.	We have $\frac{AB}{CD} = \frac{(-7)(13)}{\left(\frac{1}{5}\right)\left(\frac{5}{4}\right)} = -364.$
1.	Rewrite as $\sqrt{10-x} - \sqrt{4-x} = 2$, then square both sides and simplify to obtain $5-x = \sqrt{(10-x)(4-x)}$. Square both sides again and simplify and get $25-10x+x^2=40-14x+x^2$, or $4x=15$, thus $x=15/4$.
2.	The desired amplitude is $\sqrt{2^2 + (-2\sqrt{3})^2} = 4$.
3.	If $\csc x = \frac{13}{\sqrt{7}}$, then $\sin x = \frac{\sqrt{7}}{13}$ and $\cos(2x) = 1 - 2\sin^2 x = 1 - 2\left(\frac{\sqrt{7}}{13}\right)^2$, so $169\cos(2x) = 169 - 14 = 155$.
4.	Changing all the bases to base 2 yields $\log_2(2x) + \frac{1}{2}\log_2 x + \frac{1}{3}\log_2 x = 12$, or $\log_2\left(2x \cdot x^{\frac{1}{2}} \cdot x^{\frac{1}{3}}\right) = \log_2(2x^{\frac{11}{6}}) = 12$. In Exponential Form this is $2^{12} = 2x^{\frac{11}{6}}$, or $x = 2^6 = 64$.
5.	We have $AB + C + \sqrt{D} = \left(\frac{15}{4}\right)(4) + 155 + \sqrt{64} = 178$.

6.	Perfect squares have an odd number of positive divisors, hence it is for those values that the Tau Function will be congruent to 1 in modulo 2. The set of positive integer perfect squares less than 200 is $\{1^2, 2^2,, 14^2\}$, having 14 elements.
7.	The graph of $y = f(x) = x + \sin x + e^x$ is strictly increasing. Since $f(0) = 1$ and $f(5) > 2$, we know there is one solution on the interval $x \in (0,5)$. Because f is strictly increasing, there is exactly 1 solution.
8.	There are 91 terms inside the parentheses. Let $S = 2(\cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \cdots + \cos^2 89^\circ + \cos^2 90^\circ)$. By the cofunction identities, $S = 2(\sin^2 90^\circ + \sin^2 89^\circ + \sin^2 88^\circ + \cdots + \sin^2 1^\circ + \sin^2 0^\circ)$. Add the two equations to obtain $2S = 2(1+1+1+\cdots + 1) = 2(91)$, or $S = 91$.
9.	By the Remainder Theorem, the desired value is simply the polynomial evaluated at $x = -1$, or $-2 - 3 + 10 + 6 = 11$.
10.	We have $\sqrt{A+2} + \sqrt{C+D-2B} = \sqrt{14+2} + \sqrt{91+11-2(1)} = 14$.
11.	The polynomial factors as $(2x + 1)(x^2 - 4) = 0$, so the sum of the roots is $-\frac{1}{2}$. Note that this is the same value obtained via the " $-b/a$ " trick, only because there are no imaginary roots.
12.	The equation simplifies to $\sin(2\theta) = 0$, or $\theta = \frac{\pi n}{2}$ for integer n . Since we have the restriction $\pi < \frac{\pi n}{2} \le 5\pi$, we must have $2 < n \le 10$. The sum of all solutions is $\sum_{n=3}^{10} \frac{\pi n}{2} = \frac{\pi}{2} (55-3) = 26\pi$.
13.	For $\sec B = 5/3$, we need $BC = 12$ and $AC = 9$. The area of this right triangle is 54 .

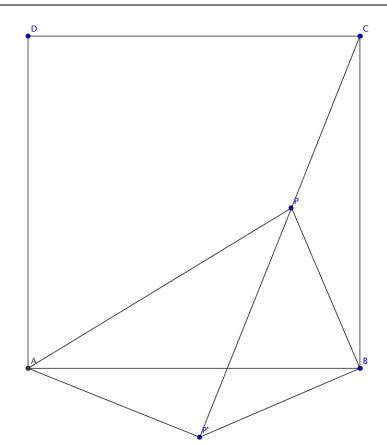
	The volume of a regular octahedron with edge length s is $V = \frac{\sqrt{2}}{3}s^3$. Setting this
14.	equal to 4/3 yields $s = \sqrt{2}$. The surface area of a regular octahedron with side
	length <i>s</i> is $S = 2s^2\sqrt{3}$. Thus, the answer is $2(\sqrt{2})^2\sqrt{3} = 4\sqrt{3}$.
15.	We have $A \tan^2 B + CD^2 = \left(-\frac{1}{2}\right) \tan^2(26\pi) + 54\left(4\sqrt{3}\right)^2 = 0 + 54 \times 48 = 2592.$
	If $ x - 7 \le 8$, then $-8 \le x - 7 \le 8$, or $ x \le 15$, or $-15 \le x \le 15$ since the
16.	absolute value of any number must be at least 0. There are 31 integers in this
	interval.
	The slope of the line needs to equal $\tan 30^\circ = 1/\sqrt{3}$. From the given equation, the
17.	slope of the line is $2/k$. Thus, $k = 2\sqrt{3}$, or $k^4 = 144$.
	Slope of the line is $2/\kappa$. Thus, $\kappa = 2\sqrt{3}$, or $\kappa = 144$.
	The maximum value will be achieved when the triangle is equilateral. Thus,
18.	$\sin A \sin B \sin C = \left(\frac{\sqrt{3}}{2}\right)^3 = M \text{ and } 128M^2 = 128\left(\frac{27}{64}\right) = 54.$
	(2)
	There are six complex solutions to the equation, consisting of three conjugate
	pairs. The "principal" solution, $2e^{\frac{\pi}{6}i}$, has a positive real part and therefore, so will
19.	its conjugate. The product of two complex conjugates is the norm-square, so the
	answer is $\left 2e^{\frac{\pi}{6}i} \right ^2 = 2^2 = 4$.
20.	We have $A + \sqrt{B} + \frac{2C}{D} = 31 + \sqrt{144} + \frac{2(54)}{4} = 70$.
	D 4
	Notice that $39^2 + 52^2 = 25^2 + 60^2$. Thus, the quadrilateral in question consists
21.	of two right triangles glued together at their hypotenuse. The area is therefore
	equal to $\frac{(39)(52)+(25)(60)}{2} = 1764$.

22.	The side length of the cube is $\cos x$. We have $6(\cos x)^2 = 36/17$, or $\cos^2 x = \frac{6}{17}$,
	so $\sin^2 x = 1 - \frac{6}{17} = \frac{11}{17} = \frac{m}{n}$, making $m + n = 28$.
23.	Since $6912 = 19(360) + 72$, the answer is 72 degrees.
24.	Guess-and-check yields $M = 512 = 8^3$ and $N = 343 = 7^3$, so the answer is 15 .
25.	We have $A - B + C - D^2 = 1764 - 28 + 72 - 15^2 = 1583$.
	Observe that <i>M</i> is a sort of permutation-scaling matrix, where the first element
26.	goes to the fourth position and gets scaled by $\frac{1}{4}$, the second element goes to the
	first position without scaling, etc. Using this reasoning, we can go backwards and
	deduce that $M^{-1} \times \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 4d \\ a \\ 2b \\ \frac{c}{3} \end{bmatrix}$, making $M^{-1} = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \end{bmatrix}$, so the sum of the
	elements of $3M^{-1}$ is $3\left(4+1+2+\frac{1}{3}\right)=22$.
27	The given function can be written as $f(x) = 1 - \frac{3}{4}\sin^2 x$, having maximum value
27.	of 1 and minimum value of $\frac{1}{4}$. The midpoint of I is $\frac{5}{8}$.
28.	Since the θ coefficient is even, the number of petals is $2 \times 24 = 48$.
	The parabola in standard form is $-8(x + 2) = (y - 3)^2$, so the vertex is at $(-2, 3)$
29.	and $p = \left -\frac{8}{4} \right = 2$. Since this is a left-facing parabola, the coordinates of the focus
	is $(-2 - 2, 3) = (-4, 3)$, and its distance from the origin is $\sqrt{(-4)^2 + 3^2} = 5$.
30.	We have $\left(\frac{CB}{D}\right)^A = \left(\frac{\left(\frac{5}{8}\right)(48)}{5}\right)^{22} = 6^{22}$, which always has 6 for a units digit.

31.	Suppose P has degree n . The left-hand side of the equation has degree $2n$ while the right-hand side has degree of $n+1$. Therefore, $n=1$ and P is a linear function, say $P(x) = mx + b$. Substitute this into the equation to obtain $mx^2 + b + 2x^2 + 10x = 2x(m(x+1) + b) + 3$, and combine like-coefficients to get $(m+2)x^2 + 10x + b = 2mx^2 + (2b+2m)x + 3$. Setting corresponding coefficients to each other yields $m=2$ and $b=3$, so $P(x)=2x+3$ and $P(100)=2(100)+3=203$.
32.	From the Extended Law of Sines, $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$. Adding up these three equations yields $\sin \alpha + \sin \beta + \sin \gamma = \frac{a+b+c}{2R} = \frac{p}{2R} = \frac{5}{2(1)} = \frac{5}{2}$. (Note: Inscribed triangles in the unit circle with a perimeter of 5 <i>is</i> possible. For example, pick one vertex to be at (1,0), the second at (0,1), and the third to be near the point $\left(\cos\frac{5\pi}{4},\sin\frac{5\pi}{4}\right)$. Such a triangle will have perimeter greater than 5.
	By continuity, a perimeter of exactly 5 is attainable.) All arguments are in degrees. By the Sum-to-Product and Co-Function Identities,
33.	$\sin 40 + \sin 20 = 2 \sin \frac{40+20}{2} \cos \frac{40-20}{2} = 2 \sin 30 \cos 10 = \cos 10 = \sin 80$. Taking the inverse sine of this expression yields 80 . Note that $a_{32} = 16 + (16 \times 2)^2 = 16(1 + (64)) = (16)(65)$ and $a_{33} = 16 + (16 \times 2)^2 = 16(1 + (64)) = (16)(65)$
34.	$(2 \times 16 + 1)^2 = 4(16)^2 + 16 + 4(16) + 1 = (16 + 1)(4 \times 16 + 1) = (17)(65)$, so we suspect that 65 is the desired maximum GCD. Note that $(3 + 2n)a_n + (1 - 2n)a_{n+1} = 65$ for all n ; therefore, any GCD of a_n and a_{n+1} will be a multiple of 65. Thus, 65 is the maximum GCD indeed.
35.	We have $A + BC + D = 203 + \left(\frac{5}{2}\right)(80) + 65 = 468$.
36.	Let P equal the intersection of the medians BE and AD. Point P divides the medians into a 2:1 ratio, so AP = 4 and EP = 3. Triangle APE is a right triangle

	with area 6, which happens to be one-sixth the area of ABC. The answer is 36 .
37.	The slope of the segment connecting the endpoints is 1; therefore, θ must be coterminal to $\frac{\pi}{4}$, or $\theta = \frac{\pi}{4} + 2\pi n$ for integer n . The r -values for each endpoint are $(\sqrt{2})\sqrt{2} = 2$ and $(64\sqrt{2})\sqrt{2} = 128$. Thus, we have $2^1 \le 2^{\frac{2\theta}{\pi}} \le 2^7$, or $\frac{\pi}{2} \le \theta \le \frac{7\pi}{2}$. Therefore, $\frac{\pi}{2} \le \frac{\pi}{4} + 2\pi n \le \frac{7\pi}{2}$, leading to a singular answer of $n = 1$. There is only 1 intersection point.
38.	Let θ denote the in-between angle. The desired ratio is equal to $\frac{\frac{1}{2}(8)(15)\sin(\theta)}{\frac{1}{2}(8)(15)\sin 2\theta} = \frac{\sin \theta}{2\sin \theta \cos \theta} = \frac{\sec \theta}{2}$. If $\sin \theta = 8/17$, then $\cos \theta = 15/17$, so $\frac{\sec \theta}{2} = \frac{\frac{17}{15}}{2} = 17/30$.
39.	The first few terms of the sequence are $a_1=2$, $a_2=1-\frac{1}{a_1}=1-\frac{1}{2}=\frac{1}{2}$, $a_3=1-\frac{1}{a_2}=1-\frac{1}{\frac{1}{2}}=-1$, and this cycle continues onward. Every three terms starting from the first will have a sum of 1.5, and since $833=3(277)+2$, the desired sum is $277(1.5)+2+\frac{1}{2}=418$.
40.	We have $A + \frac{D}{30BC + 2} = 36 + \frac{418}{30(\frac{17}{30}) + 2} = 36 + 22 = 58.$
41.	If $S = \{1\}$, then $\sum_{n=1}^{1} \frac{1}{\Pi(S_n)} = 1$. If $S = \{1, 2\}$, then $\sum_{n=1}^{3} \frac{1}{\Pi(S_n)} = 2$. In general, it can be proven by induction that if $S = \{1, 2, 3,, n\}$, then $\sum_{n=1}^{2^n-1} \frac{1}{\Pi(S_n)} = n$, so for this problem the answer is 4 .
42.	Let θ denote the angle opposite the side with length a . We have $\sin(2\theta) = 2\sin\theta\cos\theta = 2\left(\frac{a}{2\sqrt{ab}}\right)\left(\frac{b}{2\sqrt{ab}}\right) = \frac{1}{2}$. Thus, $2\theta = 30^{\circ}$ or $\theta = 15^{\circ}$.

We have $12\sin(-u) - .5\cos(-v)\tan(-w) = -12\sin u + .5\cos v \tan w = -12\left(\frac{3}{4}\right) + .5\left(-\frac{1}{7}\right)(28) = -11.$



44.

Refer to the diagram above. Take triangle CPB and rotate it across B so that C coincides with A, resulting in triangle AP'B. We have PB = P'B and $m \angle$ CBP = $m \angle$ ABP', so triangle PBP' is a 45-45-90 triangle, making PP' = $(2\sqrt{2})\sqrt{2} = 4$. Consequently, triangle APP' is a 3-4-5 right triangle, where \angle PP'A is the right angle. To obtain the area of square ABCD, we only need to find the value of AB². Extend segment P'B into a line and drop altitude AE, as shown below.

	B B
	We have $CP = AP' = 3$ and since $AP'E$ is a 45-45-90 triangle, $AE = EP' = 3/\sqrt{2}$.
	Thus, by the Pythagorean Theorem, $AB^2 = AE^2 + EB^2 = \left(\frac{3}{\sqrt{2}}\right)^2 + \left(\frac{3}{\sqrt{2}} + 2\sqrt{2}\right)^2 =$
	29 .
45.	We have $10D - A^{B+C} = 10(29) - (4)^{15-11} = 290 - 256 = 34$.
46.	Since $2(3n+5)-3(2n+3)=1$, $3n+5$ and $2n+3$ are relatively prime. Also, since $2210=2\times5\times13\times17$, we have $\frac{2210}{(3n+5)(2n+3)}=\frac{2\times5\times13\times17}{(3n+5)(2n+3)}=5$ $\frac{(2\times13)(17)}{(3n+5)(2n+3)}$. Setting $3n+5=26$ and $2n+3=17$ yields $n=7$. Turns out this is the only valid value for n .
47.	By the Sum-and-Difference Formulae, the left-hand-side of the equation simplifies to $\sin\frac{2x+4x}{3}\cos\frac{16x-6x}{5}=\sin(2x)\cos(2x)$, or $\frac{1}{2}\sin(4x)$ by the Double-Angle Formula for sine. Thus, the equation is $\frac{1}{2}\sin(4x)=\frac{1}{4}$, and $4x=\frac{\pi}{6}$, making $x=\pi/24$.
48.	Note that $M = \begin{bmatrix} 1/2 & \sqrt{3}/2 \\ -\sqrt{3}/2 & 1/2 \end{bmatrix} = \begin{bmatrix} \cos\frac{-\pi}{3} & -\sin\frac{-\pi}{3} \\ \sin\frac{-\pi}{3} & \cos\frac{-\pi}{3} \end{bmatrix}$, a clockwise rotation of $\frac{\pi}{3}$

	about the origin. Thus, $M^{2013} = \begin{bmatrix} \cos\frac{-2013\pi}{3} & -\sin\frac{-2013\pi}{3} \\ \sin\frac{-2013\pi}{3} & \cos\frac{-2013\pi}{3} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. The sum
	of the squares of the elements is 2 .
	Since $25^2 < 650 < 26^2$, f will take on every integer from 1 to 25, inclusive. We
	find that f equals 1 for two values (1 and 2), f equals 2 for four values (3, 4, 5,
49.	and 6), f equals 3 for six values, etc. Based on this pattern, we have
	$\sum_{n=1}^{650} \frac{1}{f(n)} = 2(1) + 4\left(\frac{1}{2}\right) + 6\left(\frac{1}{3}\right) + \dots + 50\left(\frac{1}{25}\right) = 2 + 2 + 2 + \dots + 2 = 25(2) = 50.$
50.	We have $AC + \frac{\pi}{B} + D = (7)(2) + \frac{\pi}{\pi/24} + 50 = 88$.