2003 Mu Alpha Theta National Convention Mu Calculus Applications Topic Test – Solutions

- 1. **(C)**. By the Product Rule, f'(x) = (x+2)(x+3) + (x+1)(x+3) + (x+1)(x+2), hence, f'(1) = 12 + 8 + 6 = 26.
- 2. **(B)**. Using L'Hôpital's Rule, $\lim_{x\to 0} \frac{\sin(5x)}{3x} = \lim_{x\to 0} \frac{5\cos(5x)}{3} = \frac{5}{3}$
- 3. **(A)**. Average value $=\frac{1}{3-1}\int_1^3 e^x dx = \frac{e^3-e}{2}$
- 4. **(D)**. The given limit is simply the derivative of f evaluated at x = 2. Since f'(x) = 6x, the answer is 6(2) = 12.
- 5. (B). Choice A and D are false (take f(x) = |x|, for example), as well as C because differentiability implies continuity, but that would mean B is true.
- 6. (C). Note that $2003 \equiv 2004 1 \equiv 0 1 \equiv 3 \pmod{4}$. Since g's derivatives repeat at cycles of 4, the 2003rd derivative is the same as the third derivative, or $-\cos x$.
- 7. (A). Note that $\sin x + \cos x = \sqrt{2}\sin(x + \pi/4)$. Since $|\sin u| \le 1$, the maximum is $\sqrt{2}(1) = \sqrt{2}$.
- 8. **(A)**. By the Product Rule, $y' = 3x^2 \cos(4x) 4x^3 \sin(4x)$.
- 9. (C). Taking the derivative and using a lotta trig identities, the derivative reduces to $3\cos(2x)(\sin(2x)+1)$ which, when evaluated at $x=\pi/4$, gives 0.
- 10. **(B)**. Differentiating implicity, we get $3x^2 + 3y^2y' = ay + axy'$, and after some rearrangement, $y' = -(3x^2 ay)/(3y^2 ax)$. Since x = y = 2003, y' is just -1.
- 11. **(D)**. Simplify first to get $x(t) = t^6 + 3t^5 + t^4$, differentiate twice to get $x''(t) = a(t) = 12t^2 + 60t^3 + 30t^4$, and a(1) = 102.
- 12. **(A)**. First, we find the value of R, which is ((100)(200))/(100 + 200) = 200/3. Then, differentiating the formula with respect to t, we get $R'/R^2 = R'_1/R_1^2 + R'_2/R_2^2$. Thus, $R' = (200/3)^2(.4/(100)^2 + .5/(200)^2) = 7/30$.
- 13. (A). If θ is the angle between the top of the ladder and wall and x is the distance from the wall to the base of the ladder, then the two variables can be related by $\sin \theta = x/15$. Differentiating, we get $(15 \cos \theta)\theta' = dx$. Plug in values to get $\theta' = \sqrt{2}/5$.
- 14. **(C)**. Note that f is nonnegative on the given interval. Thus, $A(c) = \int_0^c x^4 + 2x^2 + 12$, or $A'(c) = c^4 + 2c^2 + 12$, making A'(5) = 687.

- 15. **(E)**. Writing out the first few terms to try to find a pattern, we find that the kth partial sum is k/(k+1). The k in this problem is 2003, so the answer is 2003/2004.
- 16. **(E)**. Working out the first few terms reveals that $a_n = 1/(10^{2003} + n 1)$. Since the sum of a harmonic series diverges, the given sum has no upper bound.
- 17. **(B)**. By L'Hôpital's Rule, $\lim_{x \to \pi/2} \frac{e^{\cos x} 1}{x \pi/2} = \lim_{x \to \pi/2} \frac{-(\sin x)e^{\cos x}}{1} = -1$
- 18. (A). Since f(0) = 0 and f(5) = -4, f has a root in-between that interval by the Intermediate Value Theorem. It's easy to check that the other intervals don't contain a root in them.
- 19. **(D)**. The area is given by $A(x) = 2xy = 2x(64 4x^2) = 128x 8x^3$. Setting A'(x) = 0 yields a critical value of $x = 4/\sqrt{3}$, which is a maximum by the First Derivative Test. The answer is $A(4/\sqrt{3}) = 1024\sqrt{3}/9$.
- 20. (C). By the matrix formula for the area of a triangle given three vertices, we get that the area expression in terms of x (in fact, it's actually independent of f(x)!) is given by 5|x|, making the maximum 5(20) = 100.
- 21. **(B)**. The problem stated in the language of differential equations becomes f'(x) = f(x), or after separation of variables, $f(x) = Ce^x$ for some constant C. Plug in the initial condition and get that $C = 3/e^5$, making $f(x) = 3e^{x-5}$, so $f(6) = 3e \approx 8.15$.
- 22. **(D)**. Set the y-values equal to each other to obtain intersection points of (0,0), (-1,-1), and (1,1). Using symmetry and the Shell Method, the volume is $2\left(2\pi\int_0^1 x(x-x^3)\,dx\right) = 8\pi/15$.
- 23. (A). In order for the two curves to be tangent to each other, they need to intersect and have equal derivatives at that intersection point. Solving $x^3 3x + 4 = 3(x^2 x)$ and $3x^2 3 = 3(2x 1)$ yields a common value of x = 2, so the point is (2, 6).
- 24. **(B)**. The distance from the axis of revolution to the center of the circle is 6 while its area is π . By the Theorem of Pappus, the volume is $2\pi(6)(\pi) = 12\pi^2$.
- 25. (A). The ellipse has a larger radius of 5 and smaller diameter of 3. By the standard formula the area is $\pi(5)(3) = 15\pi$.
- 26. **(B)**. The graphs intersect at (0,0) and (10,100), as easily shown by setting the equations equal to each other. The area is then $\int_0^{10} 10x x^2 dx = 500/3$.
- 27. (D). Integration is the operation needed to sum up the cross sections. The volume is $\int_0^{10} 3x^2 + 3 dx = 1030$.
- 28. (B). Let the limit equal L. Take natural logs of both sides and write the limit as $\lim_{x\to\infty}(\ln(2^x-1)/x-(\ln x)/x)=\ln L$. Using L'Hôpital's Rule separately, the left-hand side is equal to $\ln 2-0=\ln 2$. Thus, $L=e^{\ln 2}=2$.

- 29. (A). Let x = 0 in the inequality to get $(P(0))^2 + 4 \le 4P(0)$, or $(P(0) 2)^2 \le 0$. The square of any quantity can't be negative so we can conclude that P(0) = 2. Similarly, letting x = 1 yields P(1) = 2. Since P(0) = P(1), there is a number c in between 0 and 1 such that P'(c) = 0 (Rolle's Theorem), contradicting the fact that P'(x) > 0 for all x. No such polynomials P exist.
- 30. (A). Let A=(0,0), B=(2,0), and $C=(0,\sqrt{3})$. The point P that minimizes the total distance is called the *Fermat Point* and is obtained by erecting equilateral triangles on each side of ABC and finding the intersection point of each of the lines passing through a vertex of ABC and the farthest equilateral triangle vertex opposite to it. After a lengthy calculation, we find that $P=(5/13,3\sqrt{3}/13)$, making the answer A.