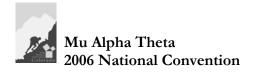


Uı	Unless otherwise indicated, all points, lines, curves, and shapes mentioned in a given problem lie in the same Cartesian coordinate plane.						
1.		Two perpendicular lines have slopes b and d , where $b \neq 0$ and $d \neq 0$. Which of the following must be equal to the number 1?					
	A) bd	$B)\frac{b}{d}$	C) <i>-bd</i>	D) $-\frac{b}{d}$	E) NOTA		
2.	Determine the center of the circle given by the equation $(x+4)^2 + (y-6)^2 = 2$.						
	A) $(-4,6)$	B) $(-2,3)$	C)(2,-3)	D) (4, -6)	E) NOTA		
3.	If a line that is not a function contains the point (m,n) , where $mn \neq 0$, then the line must also contain which of the following points?						
	A)(-m,n)	B)(-n,m)	C)(m,-n)	D)(n,-m)	E) NOTA		
4.	A parallelogram has vertices at the points $(1, 5)$, $(3, 7)$, and $(7, 8)$. If the fourth vertex is at the point (m, n) and $mn > 0$, then find $ m-n $.						
	A) 0	B) 1	C) 2	D) 3	E) NOTA		
5.	Which word completes a true statement when placed in the blank below?						
	The directrix of a parabola and the line containing the parabola's latus rectum are always						
	A) coincident	B) parallel	C) perpendicular	D) skew	E) NOTA		
6.	A sphere in space the sphere to a poi units. Find <i>P</i> •			ere $k > 0$. The dis	tance from the center of		


C) $\frac{20k}{3}$ E) NOTA

7. The complex number a + bi, where a and b are real, lies in the real-imaginary plane. The distance from the number to zero is equal to which of the following expressions?

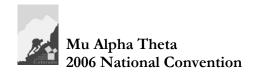
|a|+|b| III. $\sqrt{a^2+b^2}$ II. |a+bi|I.

A) I & II only B) II & III only C) I & III only D) I, II, & III E) NOTA

E) NOTA

A) $2\sqrt{2}$

B) $2\sqrt{3}$


9.	Consider the convex quadrilateral with vertices $(0,0)$, $(10,-1)$, $(11,4)$, and $(15,1)$. The quadrilateral's centroid is the point (m,n) . Evaluate \sqrt{mn} .					
	A) 3	B) 4	C) 5	D) 6	E) NOTA	
10.	10. The line given by which of the following equations is parallel to the line containing the points (6, 6) and (9, 8)?					
	A) $y = -\frac{3}{2}x + 2$	B) $y = -\frac{2}{3}x + 2$	C) $y = \frac{2}{3}x + 2$	D) $y = \frac{3}{2}x + 2$	E) NOTA	
11.	11. One diagonal of the rhombus R has endpoints $(8, 8)$ and $(2, 0)$. The area of R is 30 square units. The other diagonal is a segment of the line given by which of the following equations?					
	A)3x + 4y = 31	B) 4x + 3y = 31	C) 3x + 4y = 32	D) 4x + 3y = 32	E) NOTA	
12.	12. Which of the following is a focus of the graph given by the equation $\frac{x^2}{13} - \frac{y^2}{12} + 1 = 0$?					
	A) (0,1)	B)(0,5)	C) (1,0)	D)(5,0)	E) NOTA	
13. The points $(0, 8)$ and $(-8, 4)$ lie on a circle If the center of the circle is the point (m, n) , then find $ 2m+n $.						
	A) 1	B) 2	C) 3	D) 4	E) NOTA	
14. Each leg of a right triangle coincides with an axis of the Cartesian plane. The triangle's hypotenuse measures $4\sqrt{2}$ units, and its area is 8 square units. If the point (m,n) is a vertex of the triangle and $m-n>0$, then how many distinct values of the expression $(m-n)$ exist?						
	A) 1	B) 2	C) 4	D) 8	E) NOTA	

8. A cube in space has a surface area of 48 square units. The distance from one vertex of the cube

D) $2\sqrt{6}$

to another random vertex is k units. Which of the following could **not** equal k?

C) 4

15.	7. The circumference of the circle defined by the equation $x^2 - 2x = 6x - y^2$ is $2^N \cdot \pi$ units. Find N .						
	A) 2	B) 3	C) 4	D) 5	E) NOTA		
16.	16. Let T be the set of conic sections {hyperbola, circle, parabola, non-circular ellipse}. How many elements of T must have an eccentricity of at most 1?						
	A) 1	B) 2	C) 3	D) 4	E) NOTA		
17.	Which expression	completes a true s	tatement when pla	ced in the blank be	low?		
"Define the fixed points F_1 and F_2 , and the positive real number K . Let d_1 = the distance from F_1 to a point P , and let d_2 = the distance from F_2 to P . The locus of all points P such that $K = $ must be a hyperbola."							
	A) $(d_1)^2 - (d_2)^2$	$\mathrm{B)} - \left \left(d_1 \right) - \left(d_2 \right) \right $	C) $\left \left(d_1 \right)^2 + \left(d_2 \right)^2 \right $	D) $(d_1 - a_1)^2$	$(l_2)^2$ E) NOTA		
18. The distance between the foci of an ellipse is 6, and the length of its major axis is 10. Find the area of the ellipse, in square units.							
	A)15 π	B) 20π	C) 27π	D) 30π	E) NOTA		
19.	9. The latus rectum of a parabola measures 8, and the parabola's vertex is the point (-4,2). If the parabola opens to the right, then in how many quadrants does the parabola lie?						
	A) 1	B) 2	C) 3	D) 4	E) NOTA		
20.	0. Circle <i>C</i> has a diameter measuring $20\pi^{-\frac{1}{2}}$ units, and is centered at the origin. Triangle <i>T</i> lies entirely within circle <i>C</i> and has vertices at the points $(-3,-1)$, $(2,-4)$, and $(3,1)$. Let p be the probability that a point selected at random from within circle <i>C</i> also lies in triangle <i>T</i> . Find the hundredths digit of p .						
	A) 2	B) 4	C) 6	D) 8	E) NOTA		

21. Consider a hyperbola. Let T be the length of its transverse axis, let N be the length of its conjugate axis, and let L be the length of its latus rectum. If 1 < N < 2 < L, then how many of the following four statements must be true?

 $T \neq \frac{1}{2} \qquad \qquad T \neq 1 \qquad \qquad T \neq 2 \qquad \qquad T \neq 4$

A) 1

B) 2

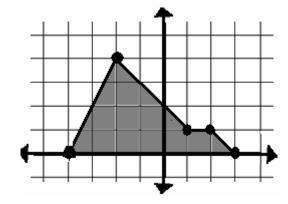
C) 3

D) 4

E) NOTA

22. Consider the regular hexagon H. You need to draw a convex quadrilateral Q such that every vertex of Q is also a vertex of H. How many different quadrilaterals meet your need?

A) 10

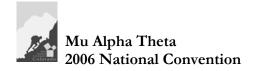

B) 15

C) 20

D) 30

E) NOTA

- 23. Find the area (shaded below) of the region between the graph and the x axis. (Marked points have integral coordinates, and the graph is made exclusively of line segments. The scale on each axis is 1.)
 - A) 11.5
 - B) 12
 - C) 12.5
 - D) 13
 - E) NOTA



24. Let $m = (1-i)^4$ and $n = (\sqrt{-4})(\sqrt{-16})$. When the slope of the line containing m and n in the Argand plane is written as a simplified fraction in the form $\frac{a}{b}$, evaluate |ab|.

A) $\frac{1}{2}$ B) $\frac{2}{3}$ C) $\frac{3}{2}$

D) 2

E) NOTA

25.	The vertices of a kite are the points (m,n) , $(m-2, n+3)$, $(m+1, n+5)$, and $(m+3, n+K)$. Evaluate $ 2K $.						
	A) 1	B) 2	C) 3	D) 4	E) NOTA		
26.	6. A parabola's axis of symmetry is a vertical line, and intersects the parabola's directrix at the point $(4,-4)$. The focus of the parabola is the point (m,n) , and $mn = 0$. Which of the following points lies on the parabola?						
	A) (-6,2)	B) (-4,4)	C) $(2,-2)$	D) (4,-2)	E) NOTA		
27.	7. Find the total length of the curve determined by the equation $x = \sqrt{64 - y^2}$.						
	A) 8π	B)16 π	$C)32\pi$	D) 64π	E) NOTA		
28.	8. How many times do the graphs of the equations $0.8x^2 = (2 - y)(2 + y)$ and $x^2 = 4x - y - 6$ intersect?						
	A) 0	B) 1	C) 2	D) 4	E) NOTA		
29.	A line with a negative slope has a y-intercept of 10. The line makes an acute angle, $\angle G$, with the y-axis. If $\tan(G) = \frac{2}{5}$, then find the line's x-intercept.						
	A) -25	B) -4	C) 4	D) 25	E) NOTA		
30.	30. Find the distance between the lines with equations $y = 2x$ and $y = 2x + 5$.						
	$A)\frac{5}{2}$	B)√5	C)√21	D) 5	E) NOTA		