

Hustle Test #841 Trigonometry

Hustle Test #841 Trigonometry

Hustle Test #841 Trigonometry

Hustle Test #841 Trigonometry

#1 Trigonometry – Hustle MAθ National Convention 2013	#1 Trigonometry – Hustle MAθ National Convention 2013		
Find the length of the hypotenuse of a right triangle with legs of length 3 and 7.	Find the length of the hypotenuse of a right triangle with legs of length 3 and 7.		
Answer :	Answer :		
Round 1 2 3 4 5	Round 1 2 3 4 5		
#1 Trigonometry – Hustle	#1 Trigonometry – Hustle		
MAθ National Convention 2013	MAθ National Convention 2013		

Find the length of the hypotenuse of a right triangle with legs of length 3 and 7.

Find the length of the hypotenuse of a right triangle with legs of length 3 and 7.

Answer : ______ Answer : _____

Round 1 2 3 4 5 Round 1 2 3 4 5

#2 Trigonometry – Hustle MA0 National Convention 2013

#2 Trigonometry - Hustle MA0 National Convention 2013

Evaluate:

$$\cot^{2}\left(\frac{9\pi}{17}\right) - \tan^{2}\left(\frac{9\pi}{17}\right) + \cos^{2}\left(\frac{9\pi}{17}\right) + \sec^{2}\left(\frac{9\pi}{17}\right) - \csc^{2}\left(\frac{9\pi}{17}\right) + \sin^{2}\left(\frac{9\pi}{17}\right)$$

Evaluate:

$$\cot^{2}\left(\frac{9\pi}{17}\right) - \tan^{2}\left(\frac{9\pi}{17}\right) + \cos^{2}\left(\frac{9\pi}{17}\right) + \sec^{2}\left(\frac{9\pi}{17}\right) - \csc^{2}\left(\frac{9\pi}{17}\right) + \sin^{2}\left(\frac{9\pi}{17}\right)$$

Answer : ______

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#2 Trigonometry – Hustle MAθ National Convention 2013

#2 Trigonometry – Hustle MA0 National Convention 2013

Evaluate:

$$\cot^{2}\left(\frac{9\pi}{17}\right) - \tan^{2}\left(\frac{9\pi}{17}\right) + \cos^{2}\left(\frac{9\pi}{17}\right) + \sec^{2}\left(\frac{9\pi}{17}\right) - \csc^{2}\left(\frac{9\pi}{17}\right) + \sin^{2}\left(\frac{9\pi}{17}\right)$$

Evaluate:

$$\cot^{2}\left(\frac{9\pi}{17}\right) - \tan^{2}\left(\frac{9\pi}{17}\right) + \cos^{2}\left(\frac{9\pi}{17}\right) + \sec^{2}\left(\frac{9\pi}{17}\right) - \csc^{2}\left(\frac{9\pi}{17}\right) + \sin^{2}\left(\frac{9\pi}{17}\right)$$

Answer : _____

Answer : _____

Round 1 2 3 4 5

#3	Trigonometry - Hu	stle
MA	AO National Convent	ion 2013

In right triangle *SUN* with right angle U, NU=48, SN=73, and SU=55. Find **csc** *N* as a common fraction.

#3 Trigonometry – Hustle MA0 National Convention 2013

In right triangle *SUN* with right angle U, NU=48, SN=73, and SU=55. Find **csc** *N* as a common fraction.

_			
Answer			

Round 1 2 3 4 5

#3 Trigonometry - Hustle MA0 National Convention 2013

In right triangle *SUN* with right angle U, NU=48, SN=73, and SU=55. Find **csc** *N* as a common fraction.

Answer : ______

Round 1 2 3 4 5

#3 Trigonometry - Hustle MA0 National Convention 2013

In right triangle *SUN* with right angle U, NU=48, SN=73, and SU=55. Find **csc** *N* as a common fraction.

Answer : _____

Answer : _____

Round 1 2 3 4 5

Simplify
$$\frac{\sin 2A}{1-\cos 2A}$$
.

Simplify
$$\frac{\sin 2A}{1-\cos 2A}$$
.

Answer : _____

Round 1 2 3 4 5

#4 Trigonometry - Hustle MAθ National Convention 2013

Simplify $\frac{\sin 2A}{1-\cos 2A}$.

Answer : _____

Round 1 2 3 4 5

#4 Trigonometry - Hustle MAθ National Convention 2013

Simplify $\frac{\sin 2A}{1-\cos 2A}$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#5 Trigonometry – Hustle MA0 National Convention 2013	#5 Trigonometry – Hustle MAθ National Convention 2013			
Evaluate sin75° – sin15° . Your answer should contain no double radicals.	Evaluate sin75° – sin15° . Your answer should contain no double radicals.			
Answer :	Answer :			
Round 1 2 3 4 5	Round 1 2 3 4 5			

#5 Trigonometry – Hustle MAθ National Convention 2013

Evaluate **sin75°** – **sin15°**. Your answer should contain no double radicals.

#5 Trigonometry – Hustle MAθ National Convention 2013

Round 1 2 3 4 5

Evaluate $sin75^{\circ}-sin15^{\circ}$. Your answer should contain no double radicals.

Answer : _____ Answer : _____

#6 Trigonometry - Hustle MAθ National Convention 2013

Solve for *x* over $[0^{\circ}, 360^{\circ}]$: $\cos x = \frac{1}{2}$. Express your answer(s) in degrees.

#6 Trigonometry - Hustle MA0 National Convention 2013

Solve for x over $[0^{\circ}, 360^{\circ}]$: $\cos x = \frac{1}{2}$. Express your answer(s) in degrees.

Answer : _____

Round 1 2 3 4 5

#6 Trigonometry - Hustle MA0 National Convention 2013

Solve for x over $[0^{\circ}, 360^{\circ}]$: $\cos x = \frac{1}{2}$. Express your answer(s) in degrees.

Answer : _____

Round 1 2 3 4 5

#6 Trigonometry - Hustle MA0 National Convention 2013

Solve for x over $[0^{\circ}, 360^{\circ}]$: $\cos x = \frac{1}{2}$. Express your answer(s) in degrees.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#7 Trigonometry – Hustle MAθ National Convention 2013

#7 Trigonometry - Hustle MA0 National Convention 2013

Find the least positive solution, in degrees,

for
$$\sin^2\left(\frac{3}{2}x\right) = \frac{1}{4}$$
.

Find the least positive solution, in degrees,

for
$$\sin^2\left(\frac{3}{2}x\right) = \frac{1}{4}$$
.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#7 Trigonometry – Hustle MAθ National Convention 2013

Find the least positive solution, in degrees,

for
$$\sin^2\left(\frac{3}{2}x\right) = \frac{1}{4}$$
.

#7 Trigonometry - Hustle MA0 National Convention 2013

Find the least positive solution, in degrees,

for
$$\sin^2\left(\frac{3}{2}x\right) = \frac{1}{4}$$
.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#8 Trigonometry - Hustle
MA0 National Convention 2013

#8 Trigonometry – Hustle MAθ National Convention 2013

Let $i = \sqrt{-1}$. Write 2 + 2i in exponential form with least positive 0.

Let $i = \sqrt{-1}$. Write 2 + 2i in exponential form with least positive θ .

Answer : _____

Round 1 2 3 4 5

#8 Trigonometry - Hustle MA0 National Convention 2013

Let $i = \sqrt{-1}$. Write 2 + 2i in exponential form with least positive θ .

Answer : _____

Round 1 2 3 4 5

#8 Trigonometry - Hustle MAθ National Convention 2013

Let $i = \sqrt{-1}$. Write 2 + 2i in exponential form with least positive θ .

Answer : _____

Answer : _____

Round 1 2 3 4 5

#9 Trigonometry – Hustle MAθ National Convention 2013

Write the polar coordinates $(r, \theta) = \left(2, \frac{\pi}{3}\right)$ in Cartesian coordinates, (x, y).

#9 Trigonometry – Hustle MAθ National Convention 2013

Write the polar coordinates $(r, \theta) = \left(2, \frac{\pi}{3}\right)$ in Cartesian coordinates, (x, y).

Answer	:	
AIISWCI	•	

Round 1 2 3 4 5

#9 Trigonometry - Hustle MA0 National Convention 2013

Write the polar coordinates $(r, \theta) = \left(2, \frac{\pi}{3}\right)$ in Cartesian coordinates, (x, y).

Answer : _____

Round 1 2 3 4 5

#9 Trigonometry - Hustle MA0 National Convention 2013

Write the polar coordinates $(r, \theta) = \left(2, \frac{\pi}{3}\right)$ in Cartesian coordinates, (x, y).

Answer : _____

Round 1 2 3 4 5

Answer : _____

Let
$$i = \sqrt{-1}$$
. Simplify $\left(1 + i\sqrt{3}\right)^6$.

Let
$$i = \sqrt{-1}$$
. Simplify $\left(1 + i\sqrt{3}\right)^6$.

Answer : _____

Round 1 2 3 4 5

#10 Trigonometry - Hustle MA0 National Convention 2013

Let $i = \sqrt{-1}$. Simplify $\left(1 + i\sqrt{3}\right)^6$.

Answer : _____

Round 1 2 3 4 5

#10 Trigonometry - Hustle MA0 National Convention 2013

Let $i = \sqrt{-1}$. Simplify $(1 + i\sqrt{3})^6$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#11 Trigonometry – Hustle MAθ National Convention 2013	#11 Trigonometry – Hustle MA0 National Convention 2013		
Find the sum of the complex cube roots of unity.	Find the sum of the complex cube roots of unity.		
Answer :	Answer :		
Round 1 2 3 4 5	Round 1 2 3 4 5		
#11 Trigonometry – Hustle MAθ National Convention 2013	#11 Trigonometry - Hustle MA0 National Convention 2013		
Find the sum of the complex cube roots of unity.	Find the sum of the complex cube roots of unity.		

Answer : _____

Answer : _____

Round 1 2 3 4 5

#12 Trigonometry - Hustle	
MAθ National Convention 2013	

Find the area of triangle *ABC* if BC=10, AC=20, and the measure of angle ACB is 120 degrees.

#12 Trigonometry - Hustle MA0 National Convention 2013

Find the area of triangle *ABC* if BC=10, AC=20, and the measure of angle ACB is 120 degrees.

Answer : _____

Round 1 2 3 4 5

#12 Trigonometry - Hustle MA0 National Convention 2013

Find the area of triangle *ABC* if BC=10, AC=20, and the measure of angle ACB is 120 degrees.

Answer : _____

Round 1 2 3 4 5

#12 Trigonometry - Hustle MA0 National Convention 2013

Find the area of triangle *ABC* if BC=10, AC=20, and the measure of angle ACB is 120 degrees.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#13 Trigonometry - Hustle MA0 National Convention 2013

If $\sin A = \frac{1}{6}$, find $\sin 3A$. Express your answer as a common fraction.

#13 Trigonometry - Hustle MA0 National Convention 2013

If $\sin A = \frac{1}{6}$, find $\sin 3A$. Express your answer as a common fraction.

Answer : ______

Round 1 2 3 4 5

#13 Trigonometry - Hustle MA0 National Convention 2013

If $\sin A = \frac{1}{6}$, find $\sin 3A$. Express your answer as a common fraction.

Answer : _____

Round 1 2 3 4 5

#13 Trigonometry - Hustle MA0 National Convention 2013

If $\sin A = \frac{1}{6}$, find $\sin 3A$. Express your answer as a common fraction.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#14 Trigonometry - Hustle	
MAθ National Convention 2013	

Find the area, in square inches, of a triangle with side lengths 2 in., 3 in., and 4 in.

#14 Trigonometry - Hustle MA0 National Convention 2013

Find the area, in square inches, of a triangle with side lengths 2 in., 3 in., and 4 in.

_			
Answer	:		

Round 1 2 3 4 5

#14 Trigonometry - Hustle MA0 National Convention 2013

Find the area, in square inches, of a triangle with side lengths 2 in., 3 in., and 4 in.

Answer : _____

Round 1 2 3 4 5

#14 Trigonometry - Hustle MA0 National Convention 2013

Find the area, in square inches, of a triangle with side lengths 2 in., 3 in., and 4 in.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#15 Trigonometry - Hustle
MAθ National Convention 2013

#15 Trigonometry - Hustle MA0 National Convention 2013

Simplify $\csc\theta \left(1-\cos^2\theta\right)$.

Simplify $\csc\theta (1-\cos^2\theta)$.

Answer : _____

Round 1 2 3 4 5

#15 Trigonometry - Hustle MA0 National Convention 2013

Simplify $\csc\theta \left(1-\cos^2\theta\right)$.

Answer : _____

Round 1 2 3 4 5

#15 Trigonometry - Hustle MA0 National Convention 2013

Simplify $\csc\theta (1-\cos^2\theta)$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#16 Trigonometry - Hustle
MA0 National Convention 2013

#16 Trigonometry - Hustle MA0 National Convention 2013

Simplify $\cos(270^{\circ} - \alpha)\cot(180^{\circ} - \alpha)$.

Simplify $\cos(270^{\circ} - \alpha)\cot(180^{\circ} - \alpha)$.

Answer : _____

Round 1 2 3 4 5

#16 Trigonometry - Hustle MA0 National Convention 2013

Simplify $\cos(270^{\circ} - \alpha)\cot(180^{\circ} - \alpha)$.

Answer : _____

Round 1 2 3 4 5

#16 Trigonometry - Hustle MAθ National Convention 2013

Simplify $\cos(270^{\circ} - \alpha)\cot(180^{\circ} - \alpha)$.

Answer : ______

Answer : _____

Round 1 2 3 4 5

#17 Trigonometry - Hustle MA0 National Convention 2013

In a triangle with sides a, b, and c, it is found that (a+b+c)(a+b-c)=3ab. Find the degree measure of the angle opposite side c.

#17 Trigonometry - Hustle MA0 National Convention 2013

In a triangle with sides a, b, and c, it is found that (a+b+c)(a+b-c)=3ab. Find the degree measure of the angle opposite side c.

Answer : _____

Round 1 2 3 4 5

#17 Trigonometry - Hustle MA0 National Convention 2013

In a triangle with sides a, b, and c, it is found that (a+b+c)(a+b-c)=3ab. Find the degree measure of the angle opposite side c.

Answer : _____

Round 1 2 3 4 5

#17 Trigonometry - Hustle MA0 National Convention 2013

In a triangle with sides a, b, and c, it is found that (a+b+c)(a+b-c)=3ab. Find the degree measure of the angle opposite side c.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#18 Trigonometry - Hustle	
MAθ National Convention 20	13

#18 Trigonometry - Hustle MA0 National Convention 2013

Find the period, in radians, of $f(x) = \cos(64x) + \sin(4x) + \tan(4x) + \cot(18x)$.

Find the period, in radians, of $f(x) = \cos(64x) + \sin(4x) + \tan(4x) + \cot(18x)$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#18 Trigonometry - Hustle MA0 National Convention 2013

Find the period, in radians, of $f(x) = \cos(64x) + \sin(4x) + \tan(4x) + \cot(18x)$.

#18 Trigonometry - Hustle MA0 National Convention 2013

Find the period, in radians, of $f(x) = \cos(64x) + \sin(4x) + \tan(4x) + \cot(18x)$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#19 Trigonometry - Hustle MA0 National Convention 2013

#19 Trigonometry - Hustle MA0 National Convention 2013

Evaluate:
$$\cos \left(\cos^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} \right)$$

Evaluate: $\cos \left(\cos^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} \right)$

Answer : _____

Round 1 2 3 4 5

#19 Trigonometry - Hustle MA0 National Convention 2013

Evaluate: $\cos \left(Cos^{-1} \frac{5}{13} + Cos^{-1} \frac{3}{5} \right)$

Answer : _____

Round 1 2 3 4 5

#19 Trigonometry - Hustle MA0 National Convention 2013

Evaluate: $\cos \left(\cos^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} \right)$

Answer : _____

Round 1 2 3 4 5

Answer : _____

#20 Trigonometry - Hustle MA0 National Convention 2013

Find the cosine of the acute angle between the direction vectors of the lines $l_1 = (0, -3.4) + t(2, -1.2)$ and $l_2 = (1.3.0) + s(1, -2.3)$.

#20 Trigonometry - Hustle MA0 National Convention 2013

Find the cosine of the acute angle between the direction vectors of the lines $l_1 = (0, -3,4) + t(2, -1,2)$ and $l_2 = (1,3,0) + s(1, -2,3)$.

Answer	:	
AIISWCI	•	

Round 1 2 3 4 5

#20 Trigonometry - Hustle MA0 National Convention 2013

Find the cosine of the acute angle between the direction vectors of the lines $l_1 = (0, -3,4) + t(2, -1,2)$ and $l_2 = (1,3,0) + s(1,-2,3)$.

Answer : _____

Round 1 2 3 4 5

#20 Trigonometry - Hustle MA0 National Convention 2013

Find the cosine of the acute angle between the direction vectors of the lines $l_1 = (0, -3,4) + t(2, -1,2)$ and $l_2 = (1,3,0) + s(1,-2,3)$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

Find
$$\tan \frac{\theta}{2}$$
 if $\sin \theta = -\frac{1}{3}$ and $\cos \theta < 0$.

Find
$$\tan \frac{\theta}{2}$$
 if $\sin \theta = -\frac{1}{3}$ and $\cos \theta < 0$.

Answer : _____

Round 1 2 3 4 5

#21 Trigonometry - Hustle MA0 National Convention 2013

Find $\tan \frac{\theta}{2}$ if $\sin \theta = -\frac{1}{3}$ and $\cos \theta < 0$.

Answer : _____

Round 1 2 3 4 5

#21 Trigonometry - Hustle MA0 National Convention 2013

Find $\tan \frac{\theta}{2}$ if $\sin \theta = -\frac{1}{3}$ and $\cos \theta < 0$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#22 Trigonometry - Hustle MA0 National Convention 2013

Given that $a = \frac{1}{2}$ and (a+1)(b+1)=2, find the radian measure of $Tan^{-1}a + Tan^{-1}b$.

#22 Trigonometry - Hustle MA0 National Convention 2013

Given that $a = \frac{1}{2}$ and (a+1)(b+1)=2, find the radian measure of $Tan^{-1}a + Tan^{-1}b$.

Answer : _____

Round 1 2 3 4 5

#22 Trigonometry - Hustle MA0 National Convention 2013

Given that $a = \frac{1}{2}$ and (a+1)(b+1)=2, find the radian measure of $Tan^{-1}a + Tan^{-1}b$.

Answer : _____

Round 1 2 3 4 5

#22 Trigonometry - Hustle MA0 National Convention 2013

Given that $a = \frac{1}{2}$ and (a+1)(b+1)=2, find the radian measure of $Tan^{-1}a + Tan^{-1}b$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#23 Trigonometry - Hustle MA θ National Convention 2013

#23 Trigonometry - Hustle MA0 National Convention 2013

Find the maximum value of $y=7\sin 3x-4\sqrt{2}\cos 3x+5$.

Find the maximum value of $y = 7\sin 3x - 4\sqrt{2}\cos 3x + 5$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

Round 1 2 3 4 5

#23 Trigonometry - Hustle MA0 National Convention 2013

Find the maximum value of $y = 7\sin 3x - 4\sqrt{2}\cos 3x + 5$.

#23 Trigonometry - Hustle MA0 National Convention 2013

Find the maximum value of $y=7\sin 3x-4\sqrt{2}\cos 3x+5$.

Answer : _____

Answer : _____

Round 1 2 3 4 5

#24 Trigonometry - Hustle MA0 National Convention 2013

Find the image of (-3,7) under a rotation about the origin through an angle of $\theta = -\frac{3\pi}{4}$.

#24 Trigonometry - Hustle MA0 National Convention 2013

Find the image of (-3,7) under a rotation about the origin through an angle of $\theta = -\frac{3\pi}{4}$.

Answer : _____

Round 1 2 3 4 5

#24 Trigonometry - Hustle MA0 National Convention 2013

Find the image of (-3,7) under a rotation about the origin through an angle of $\theta = -\frac{3\pi}{4}$.

Answer : _____

Round 1 2 3 4 5

#24 Trigonometry - Hustle MA0 National Convention 2013

Find the image of (-3,7) under a rotation about the origin through an angle of $\theta = -\frac{3\pi}{4}$.

Answer : _____

Round 1 2 3 4 5

Answer : _____

#25 Trigonometry - Hustle MA0 National Convention 2013

The conic with equation $5x^2 + 3xy + y^2 = 4$ is an ellipse. The x and y-axes will coincide with the axes of the conic if the x and y-axes are rotated counterclockwise about the origin by an angle θ . Let θ_{\min} be the smallest such positive acute angle. Find $\cos \theta_{\min}$.

#25 Trigonometry - Hustle MA0 National Convention 2013

The conic with equation $5x^2 + 3xy + y^2 = 4$ is an ellipse. The x and y-axes will coincide with the axes of the conic if the x and y-axes are rotated counterclockwise about the origin by an angle θ . Let θ_{\min} be the smallest such positive acute angle. Find $\cos \theta_{\min}$.

Answer : _____

Round 1 2 3 4 5

#25 Trigonometry - Hustle MA0 National Convention 2013

The conic with equation $5x^2 + 3xy + y^2 = 4$ is an ellipse. The x and y-axes will coincide with the axes of the conic if the x and y-axes are rotated counterclockwise about the origin by an angle θ . Let θ_{\min} be the smallest such positive acute angle. Find $\cos \theta_{\min}$.

Answer : _____

Round 1 2 3 4 5

#25 Trigonometry - Hustle MA0 National Convention 2013

The conic with equation $5x^2 + 3xy + y^2 = 4$ is an ellipse. The x and y-axes will coincide with the axes of the conic if the x and y-axes are rotated counterclockwise about the origin by an angle θ . Let θ_{\min} be the smallest such positive acute angle. Find $\cos \theta_{\min}$.

Answer : _____

Round 1 2 3 4 5

Answer : _____