Relay 1:

1.
$$a^2 - b^2 = (a + b)(a - b) = 2013 = 3 \times 11 \times 61 = 2013 \times 1 = 671 \times 3 = 183 \times 11 = 61 \times 33$$
, so $M = 2013$, $N = 61$, and $2000 - M + N = 48$.

2.
$$T = 48 = 2^4 \times 3$$
. The sum of factors is $(1 + 2 + 2^2 + 2^3 + 2^4)(1 + 3) = \boxed{124}$.

3. Suppose $f(x) = ax^2 + bx + c$. Then we have a system of equations

hen we have a system
$$\begin{cases}
 a + b + c = 48 \\
 4a + 2b + c = 79 \\
 9a + 3b + c = 124
\end{cases}$$

Solve and get a = 7, b = 10, $c = \boxed{31}$.

- 4. All the prime numbers less than 31: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Only 3, 11, 17, 23, 29 satisfy the condition, the answer is 5.
- 5. Paths to reach $(5,5) = \frac{8!}{4!\cdot 4!} = 70$. Paths through (2,2) to $(5,5) = \frac{2!}{1!\cdot 1!} \cdot \frac{6!}{3!\cdot 3!} = 40$. $70 40 = \boxed{30}$.
- 6. From the first two conditions, possible numbers are 108, 138, 168, 198, 228, 258, and 288. The only one that satisfies the last condition is $\boxed{258}$.

Relay 2:

1. The distance is
$$|5(1) - 12(1) - 32| / \sqrt{5^2 + 12^2} = \frac{39}{13} = \boxed{3}$$
.

- 2. x_1 and x_2 are solutions to $x^2 3x 6 = -x^2 + 9x 20$, or $2x^2 12x + 14 = 0$. Therefore, $x_1 + x_2 = \frac{12}{2} = 6$.
- 3. First, notice that $T \ge 5$ or else the sum won't be a four-digit number. W = 3, U = 6. Therefore, conclude that $2 \cdot 0 < 10$, otherwise U = 7; and O is even because 2T is even. This makes O either O or O either O e

4.
$$16! = 2^{15} \cdot 3^6 \cdot 5^3 \cdot 7^2 \cdot 11 \cdot 13$$
. $a/c + b/d = \frac{15}{3} + \frac{6}{2} = \boxed{8}$.

5. The friendly numbers are, regardless of b, 0_b , 1_b , 10_b , 11_b , 100_b , 101_b , 111_b , $111_$

6.
$$S = \lfloor \sqrt{73} \rfloor = 8$$
.

$$\sum_{n=1}^{8} (1+i)^n = \frac{(1+i)((1+i)^8 - 1)}{(1+i) - 1} = \frac{1+i}{i} \cdot ((2i)^4 - 1) = \frac{15+15i}{i} = 15 - 15i$$
So $a = 15$, $b = -15$, $a + b = \lceil 0 \rceil$.

Relay 3:

- 1. $\triangle ACB$ and $\triangle BCD$ are similar because $\overline{AC}/\overline{BC} = \overline{BC}/\overline{DC}$ and they share the same angle. Therefore, $\angle CAB = \angle CBD = \frac{1}{4} \angle DBA = \boxed{15}$ degrees.
- 2. $\det(A \lambda I) = 0 = (15 \lambda)(30 \lambda) 18^2 = (\lambda 3)(\lambda 42)$, the answer is 3.
- 3. When the side length of an equilateral triangle is 6, the area is $6^2 \cdot \sqrt[4]{4} = 9\sqrt{3}$. Square it and get $\boxed{243}$.
- 4. The strategy of winning this game is to keep the remaining number of coins as one more than a multiple of T+1. This way, if Connie takes m coins, David will take T+1-m, which is always legal, . In this case, multiples of T+1=16 are called *gamewinning numbers*. On his first turn, David should take $\boxed{3}$ and leave 240 behind.
- 5. a + c = 30, bd = 9, b + c = 6, ad = 225. Then (a + c) (b + c) = a b = 24, and ad bd = (a b)d = 216. We get d = 9. Substitute back, b = 1, c = 5, a = 25. $a + d + bc = 25 + 9 + 5 = \boxed{39}$.
- 6. 2013^{39} ends in 7; 39^{2013} ends in 9. The final answer is $7 + 9 = 16 \rightarrow \boxed{6}$.

Relay 4:

- 1. Let the distance be 2d. Then $\frac{2d}{40} 1 = \frac{d}{40} + \frac{d}{50}$, $\frac{d}{40} 1 = \frac{d}{50}$, $\frac{d}{40} 1 = \frac{d}{50}$.
- 2. If she has n children, then n is a factor of both 400 + 7 = 407 and $\sqrt{400} + 2 = 22$. n can be either 1 or 11, but she wouldn't have problems distributing with only one child. 11
- 3. Can consider this by subtraction: the inner $9 \times 9 \times 9$ volume is not visible and the 8 corners have too many, so $11^3 9^3 8 = \boxed{594}$; or by addition: six 9×9 center cubes and twelve 9 edge cubes, so $6 \times 9 \times 9 + 12 \times 9 = \boxed{594}$.
- 4. The smallest multiple of 100 greater than 594 is 600. So $u = 600 594 = \boxed{6}$.

- 5. Solve and find that the intersections are (6,0), (-2,0), and (-3,1.5). The area is $8 \cdot 1.5/_2 = \boxed{6}$.
- 6. $\binom{39}{5}\binom{13}{1}:\binom{39}{6}=13:\frac{34}{6}=39:17$. The answer is 56.

Relay 5:

- 1. $425 = 20^2 + 5^2 = 19^2 + 8^2 = 16^2 + 13^2$. So the circle goes through 24 lattice points: $(\pm 20, \pm 5), (\pm 19, \pm 8), (\pm 16, \pm 3), (\pm 5, \pm 20), (\pm 8, \pm 19), (\pm 3, \pm 16)$. Answer is 12.
- 2. The volume we're looking for can be considered as a large cube plus a small pyramid minus a large pyramid. So volume $= T^3 + \left(\frac{T}{2}\right)^2 T \cdot \frac{1}{3} T^2(2T) \cdot \frac{1}{3} = \frac{5}{12}T^3$. Substitute T = 12, the answer is $\boxed{720}$.
- 3. $x = \sqrt[3]{T + \sqrt[3]{T + \sqrt[3]{T + \cdots}}}$, then $x = \sqrt[3]{720 + x}$. $x = \boxed{9}$.
- 4. The probability is $\frac{3}{36} + \frac{2}{36} + \frac{1}{36} = \frac{1}{6}$. The reciprocal is $\boxed{6}$.
- 5. The g.c.d. of 12 and 720 is 12; the l.c.m. of 9 and 6 is 18. $\sqrt{|12 18| + 3} = \boxed{3}$.
- 6. $f(x,y) = Ex^2 + Dxy + Cy^2 + Ax + B = 3x^2 + 6xy + 9y^2 + 12x + 720 = (x + 3y)^2 + 2(x + 3)^2 + 702 \ge \boxed{702}$, which is when x = -3 and y = 1.