Mu Ciphering

Problem	Question	Answer	Solution
0 – VE	What is the slope of the line $3x + 4y = 5$? Express your answer as a common fraction.	-3/4	Rewriting the equation of the line in slope-intercept form: $y = \frac{5}{4} - \frac{3}{4}x$. Hence, we realize that the slope is $-\frac{3}{4}$.
1 – CE	For what value of $x \in [-1,3]$ does $f'(x)$ equal the slope of the secant line connecting the points $(-1, f(-1))$ and $(3, f(3))$ for $f(x) = x^2 - 5x + 7$?	x = 1	By the Mean Value Theorem, we have that the value of $x = c$ that yields the slope of the specified secant line is: $f'(c) = \frac{f(3) - f(-1)}{(3) - (-1)}$ $2c - 5 = -3$ $\therefore c = 1$ And hence, we have the solution $x = 1$.
2 – NCE	What is the product of the positive integral factors of 16?	1024	Notice that the positive factors of 16 are just the powers of 2 from 2^0 to 2^4 . Taking the product of these factors yields: $2^0*2^1*2^2*2^3*2^4=2^{10}=1024$
3 – CE	Evaluate the following limit: $\lim_{x\to 0} \frac{1-\sec^2}{x^2}$.	$\lim_{x \to 0} \frac{1 - \sec^2}{x^2} = -1$	Apply L'Hospital's Rule twice.
4 – NCE	Evaluate: $x = \sqrt{10 + 3\sqrt{10 + 3\sqrt{\cdots}}}$.	<i>x</i> = 5	If we square both sides, we obtain the equality: $x^2 = 10 + 3\sqrt{10 + 3\sqrt{\cdots}}$ $= 10 + x$ Hence, applying the quadratic formula, we obtain that $x = 5$ or

			x = -2. Since $x > 0$, we must have that $x = 5$.
5 – NCM	Find the period of the graph of $y = 5 \sin\left(\frac{x}{4}\right) \cos\left(\frac{x}{5}\right) + 12 \cos(4x) \sin(5x).$	40pi	The first term has a period of 40pi. The second term has a period of 2pi. The first period is a multiple of the second, so the period of the sum is just 40pi.
6 – NCM	What is the ratio between the areas of the inscribed hexagon and circumscribed hexagon of a circle?	3/4	Notice that the ratio between the linear dimensions of the inscribed hexagon and the circumscribed hexagon is $\sqrt{3}/2$. Since the area of a regular polygon scales quadratically compared to its linear size, the ratio between the areas is $\sqrt[3]{4}$.
7 – NCM	Out of the top 10 Mu Ciphering last year, 4 were female. What is the probability that 3 of them were in the top 5? Express your answer as a proper fraction.	5/21	The probability of obtaining 3 females in the top 5 placers is the number of ways three females can be in the top 5 divided by the total number of arrangements of the top 10 placers. Hence the probability is $P = \frac{\binom{6}{2}\binom{4}{3}}{\binom{10}{5}} = \frac{15 \times 4}{252} = \frac{5}{21}.$
8 – CM	If the rate at which the sides of a cube are growing is 3 cm/sec, then how fast is the volume changing the instant when the surface area of the cube reaches 54 cm ² ?	81 [units ³]	The volume of a cube is $V=x^3$, hence the rate at which the volume changes with respect to the rate of change for one of its side lengths is $\frac{dV}{dt}=3x^2\frac{dx}{dt}$. So when the surface area is 54 cm squared, the side length of the cube is 3 cm. Therefore substituting in this value for x alongside the rate of growth for the side length of the cube, we obtain that the volume is changing at a rate of 81 cm cubed.

9 – CH	What is the surface area of the paraboloid created by rotating the graph of $y=\frac{1}{2}x^2$, defined on the interval $x\in [-\sqrt{3},\sqrt{3}]$, about the y-axis?	$\frac{14\pi}{3}$	By rotation of the graph $y=\frac{1}{2}x^2$ about the y-axis, we are motivated to consider horizontal slices of the paraboloid. Each slice is a thin ring, with surface area $2\pi x\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx=2\pi x\sqrt{1+x^2}dx \text{ . Hence as we integrate over all of these ring slices of the paraboloid's surface, we find that the surface area is A=\int dA_{ring}\\ =\int\limits_0^{\sqrt{3}}2\pi x\sqrt{1+x^2}dx\\ =2\pi\int\limits_0^2u^2du\\ =\frac{14\pi}{3} Where in the third equality, we pulled out all constants and made the u-substitution: u=\sqrt{1+x^2} .$
12 – CH	What is the value of the integral: $I = \int_{-\infty}^{\infty} e^{- x } dx$?	<i>I</i> = 2	Notice that we can rewrite the integral as $I = \int_{-\infty}^{0} e^{-x} dx + \int_{0}^{\infty} e^{x} dx$. Evaluating these two improper integrals, we realize that both integrals evaluate to 1 and hence their sum is 2.
11 – C	What is the average value of $f(x) = \cos^2 x$ on the interval $[0,3\pi]$?	$\frac{1}{2}$	The average value of a function over an interval is the integral of the function over given interval divided by the width of the interval. Hence,

			$AV = \frac{\int_{0}^{3\pi} \cos^{2} x dx}{3\pi}$ $= \frac{\int_{0}^{3\pi} (1 + \cos 2x) dx}{6\pi}$ $= \frac{1}{6\pi} \left(x + \frac{\sin 2x}{2} \right) \Big _{0}^{3\pi}$ $= \frac{3\pi}{6\pi} = \frac{1}{2}$
10 - C	Evaluate: $\frac{d}{dx} \{ f(f(f(1))) \}$ for $f(x) = x^2 + 5$.	1968	An easy way of quickly evaluating this expression is by applying the chain rule for differentiation: $\frac{d}{dx} \left\{ f(f(f(1))) \right\} = \frac{df}{dx} \left(f(f(1)) \right) \cdot \frac{df}{dx} \left(f(1) \right) \cdot \frac{df}{dx} (1)$ $= 2 \left((x^2 + 5) + 5 \right)_{x=1} \cdot 2 \left(x^2 + 5 \right)_{x=1} \cdot 2x \Big _{x=1}$ $= 82 \cdot 12 \cdot 2$ $= 1968$
13 – C	The function $y(x)$ is the solution to the Initial Value Problem: $\frac{dy}{dx} = y(x), y(0) = 2$. What is the value of $y(\ln 2)$?	4	Separating variables, we have that $\frac{dy}{y}=dx$. Integrating from $x'=0$ and $x'=x$, we have that $\ln y=x+c$ or $y(x)=Ce^x$. Applying our initial condition, we realize that $C=2$. Hence, our solution is $y(x)=2e^x$. Therefore when the solution is evaluated, we find $y(\ln 2)=4$.