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1. Rewrite	
x2

1 x2 	as	
1 x2

1 x2 
1

1 x2  1
1

1 x2 	so	that	our	integral	becomes	

1
1

1 x2





 dx  x  arctan x C .	B	

2. This	is	testing	a	version	of	the	fundamental	theorem	of	calculus.	Taking	the	

derivative	of	the	integral	yields	 f ' x   1

x ln x
 f '

1

e





 e .	D	

3. This	is	a	Riemann	Sum.	Dividing	and	re‐arranging	gives	

lim
n

4n

n2  i2
i1

n

  4 lim
n

1

1
i
n







2

1

ni1

n

  4
dx

1 x2
0

1

  4arctan1 4arctan0   .		B	

4. Using	the	substitution	u 
sin x

2
	turns	the	integral	into	

2 eu2

du
0



  eu2

du




   .	

5. Since	n>‐1	the	integral	is	well	defined	using	integration	by	parts.	Thus	we	let	

dv  xn  v 
xn1

n 1
	and	u  ln x  du 

dx

x
	so	that	

xn ln x dx
1

e

 
ln x  xn1

n 1


1

n 1
xn dx

1

e

 
ln x  xn1

n 1


xn1

n 1 2 1
e 

en1

n 1


en1 1

n 1 2 
nen1 1

n 1 2

	

A
	

6. 

d dx
x

y









dy
 x 

d y  x 
dy

 x 1
dx

dy
 x 

1

1 x


dy

dx


dx

1 x  dy y   ln 1 x  C
	
B	
	

7. Let	 x  u3 	then	the	integral	becomes	
3du

u u 1   3
du

u  3
du

1 u  3ln u   3ln u 1  C  3ln x
1

3





 3ln x

1

3 1





C 

ln x  3ln x
1

3 1 C

	
D	
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8. 		Factoring	constants	out	of	the	radical	reveals	an	easier	approach:	

2
a2b2  x2b2

aa

a

 dx  2 b 1
x

a






2

a

a

 dx 	and	we	note	that	 y  b 1
x

a






2

	is	

the	top	half	of	an	ellipse	from	–a	to	a,	thus	the	integral	represents	the	area	of	
an	ellipse	with	major	radius	a	and	minor	radius	b	which	is	just	 ab .	

9. The	first	part	of	the	problem	is	to	recognize	that	

sin x  cos x dx 
1 i x2i

2i !i0



 dx 
1 i

x2i1

2i 1 !i0



 .	Thus	

1 i x2i1

2i 1 !i0




0

3
2

 dx  sin xdx
0

3
2

  cos
3
2
 cos0  1 .	

10. Given	a t   2 v t   2t  10 2000000  s t   t2  10 2000000 t .	Thus	
we	need	the	time	such	that	 t2  10 2000000 t 10000000000000  0 .	Note	
that	the	constant	is	positive	because	the	particle	is	traveling	downward	and	
starts	at	position	zero,	thus	we	start	with	
t 2  10 2000000 t  10000000000000Using	the	quadratic	formula	is	
convenient	here	because	the	discriminant	is	zero.	Thus	the	answer	is	

10 1000000 .	C	
11. The	region	formed	by	the	intersection	of	these	graphs	is	a	triangle	with	base	

length	2	and	height	4/3	(which	occurs	at	x=1/3	,	the	intersection	of	the	two	
lines).	Thus	the	area	is	(1/2)(2)(4/3)=4/3.	D	

12. Let	u  x2 1	then	the	integral	becomes	
1

2
arctanu du 

1

2
u arctanu 

1

2
ln u2 1 




C 

1

2
x2 1 arctan x2 1   1

4
ln x4  2x2  2  C

		

through	integration	by	parts.	Evaluating	at	the	bounds	gives	

8


1

4
ln2 .B	

13. Attempting	to	do	this	integral	is	futile	since	the	bounds	cross	regions	where	
y  sec5 x 	has	vertical	asymptotes.	Thus	the	integral	does	not	exist,	NOTA.	E	

14. Average	value	=	
1

2
sin x

0

2

 dx 
1

2
cos2  cos0   0.	
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15. This	integral	uses	a	clever	trick	involving	
dx

1 cot x0


2

 .	Note	that	on	the	interval	

of	integration	both	tanx	and	cotx	map	out	the	same	area.	Thus	

I 
dx

1 tan x0


2

 
dx

1 cot x0


2

 	and	2I 
dx

1 tan x0


2

 
dx

1 cot x0


2

  dx
0


2

 

2
 I 


4
.	B	

16. The	volume	of	a	solid	with	known	cross	sections	(perpendicular	to	the	y	axis)	

with	area	A	is	 Ady
b

b

 .	The	cross	sections	are	squares	whose	base	has	length	

2
36  9y2

4
.	Thus	 A  2

36  9y2

4











2

 36  9y2 .	To	determine	the	volume	

we	evaluate	 36  9y2 dy
2

2

  36x  3y3
2
2  96 .D	

17. The	region	is	a	rectangular	prism	with	one	corner	at	the	origin	and	sides	with	
length	2,	5,	and	10.	Thus	the	volume	is	(2)(5)(10)=100.	C	

18. The	function	has	zeros	at	x	=	2	and	x	=6.	Simpson’s	Rule	for	quadratics	gives	
the	exact	area	under	the	curve	and	thus	we	can	just	determine	the	definite	
integral	which	evaluates	to	32/3.	

B
	

		
19. 	i)	False	

ii)	True	
iii)	True	since	the	left	side	is	a	left	hand	approximation	and	the	right	side	is	a	
right	side	approximation.	Draw	a	picture	to	help	visualize.	
	

20. The	solid	generated	is	a	torus	and	you	can	use	geometry	to	determine	its	
volume.	Imagine	the	volume	of	the	torus	as	being	generated	by	slices	of	

circles	with	area	 	(the	area	of	 x  5 2  y2 1).	There	are	continuous	circle	
slices	equivalent	to	the	circumference	of	the	revolved	region.	Note	that	the	
centroid	of	the	circle	moves	through	a	circular	path	which	has	a	radius	of	5	

(distance	between	the	y	axis	and	center	of	 x  5 2  y2 1).	Therefore	the	
volume	is	the	area	of	our	circle,	 ,	multiplied	by	the	circumference	of	our	
revolving	circle,	10 .	The	volume	is	thus	10 2 .	C	



Mu	Integration	
2013	Mu	Alpha	Theta	National	Convention	
Solutions	
	

21. First	we	must	rewrite	our	infinite	function.	This	is	done	as	follows:	

y 
x

1
x

1
x

1 ...


x

1 y
 y2  y  x  y2  y 

1

4
 x 

1

4
 y 

1

2






2

 x 
1

4


y  x 
1

4


1

2

		

Thus	the	integral	becomes	 x 
1

4


1

2







dx

0

3

4

 
5

24 .B	
	

22. 	 x2  2 
1

4

 dx 
x3

3
 2x 1

4
64

3
 8

1

3
 2  27	A	

23. The	region	is	a	triangle	and	thus	we	can	use	geometry	to	determine	the	
integral.	The	triangle	has	a	base	length	of	8	and	a	height	of	8.	Thus	the	area	is	
(1/2)(8)(8)=32.	D	

24. Polar	area	is	defined	as	
1

2
r2 d





 	thus	all	we	need	to	do	is	determine	the	

angles	which	map	out	one	petal	of	the	graph.	These	are	going	to	be	  

12
	

and	 

12
which	can	be	found	by	sketching	and	looking	for	where	the	graph	

returns	to	the	origin,	i.e.	where	r=0.		Thus	the	area	is	

1

2
4cos2 6 



12


12

 d  4
cos 12  1

2
0


12

 d 
sin 12 

6
 2 0


12 


6
.B	

25. Arclength	=	
dx

dt






2


dy

dt






2

a

b

 ds .	Thus	we	have	that	arclength	=	

sin2 x  cos2 x
0

4

 ds  4.	D	

26. Since	f	is	even	we	have	that	 f x dx
a

a

  2 f x dx
0

a

 12 	and	since	g	is	odd	we	

have	that	 g x   0
a

a

 .	Thus	 2 f x   3g x  
a

a

 dx=24.	D	

27. x2  x  3 dx 
x3

3


x2

2
 3x C .	E	
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28. This	integral	represents	the	area	of	a	semi‐circle	with	radius	 2013 .	Thus	

2013 x2

 2013

2013

 dx 
2013

2
.C	

29. Using	u‐sub,	let	u  x 1	thus	the	integral	becomes	

x x 1dx  u 1  u
1

2du 
2

5
u

5

2 
2

3
u

3

2 C 
2

5
x 1 

5

2 
2

3
x 1 

3

2 C .B	

30. Fundamental	Theorem	of	Calculus	in	addition	to	second	derivatives.	Thus	we	

have	
d 2

dx2 lnsec t dt
1

x2










 

d

dx
2x lnsec x2    4x2 tan x2   2 lnsec x2 .	A	
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Mu Integration Test - Updated Solutions

11 (C). Notice that

cot−1(1− x+ x2) = tan−1
1

1− x+ x2
= tan−1

x− (x− 1)

1 + x(x− 1)
= tan−1 x− tan−1(x− 1).

Also, notice that ∫ 1

0

tan−1(x− 1) dx = −
∫ 1

0

tan−1 x dx

because we can make a substitution u = x− 1 on the left-hand-side integral to obtain
the right-hand-side integral. Therefore,∫ 1

0

cot−1(1− x+ x2) dx =

∫ 1

0

(
tan−1 x− tan−1(x− 1)

)
dx = 2

∫ 1

0

tan−1 x dx,

which means that the answer to the problem is equal to 2.

17 (C). Let u = (x− 1)/(b− 1), so that the integral is transformed to

lim
b→1+

∫ b

0

1√
x(x− 1)(b− x)

dx = lim
b→1+

∫ 1

0

1√
u(1− u)(1 + (b− 1)u)

du.

As b→ 1+, clearly we get
∫ 1

0
1√

u(1−u)
du = π.

22 (A). Let I equal the desired integral. Let x = (1− u)/(1 + u) to obtain

I =

∫ 1

0

ln(x+ 1)

1 + x2
dx =

∫ 1

0

ln 2− ln(1 + t)

1 + t2
dt =

∫ 1

0

ln 2

1 + t2
dt− I,

so that 2I =
∫ 1

0
ln 2
1+t2

dt = (ln 2)(tan−1 1) = (ln 2)(π
4
). Thus, I = π

8
ln 2.

23 (D). Use Integration by Parts, with u = x and dv = sinx
1+(cosx)2

. Thus, we have du = dx

and v = − tan−1(cosx):

uv −
∫
vdu = −x tan−1(cosx)

∣∣π
0
+

∫ π

0

tan−1(cosx) dx

The integral on the right-hand-side is equal to 0 because of the symmetry of the
arctangent function on the given interval. Thus, the value of the integral is I = π2/4,
so that sin

√
I = 1.

1



25 (D). Using the fact that

1+2 cosx+2 cos(2x)+ · · ·+2 cos(nx) =
sin ((n+ 1/2)x)

sin(x/2)
= sin(nx) cot(x/2)+cos(nx),

we have

an =

∫ π

0

cot(x/2) sin(nx) dx =

∫ π

0

(1+2 cosx+2 cos(2x)+· · ·+cos(nx)) dx =

∫ π

0

1 dx+0 = π.

Thus, S = 2013π and cosS = cos(2013π) = −1.

27 (E). Notice that, by symmetry,

I =

∫ π

0

log2(sinx) dx = 2

∫ π/2

0

log2(sinx) dx.

Also, by symmetry
∫ π/2
0

log2(sinx) dx =
∫ π/2
0

log2(cosx) dx. Thus, we have:

2I = 2

(∫ π/2

0

log2(sinx) dx+

∫ π/2

0

log2(cosx) dx

)
= 2

∫ π/2

0

log2(sinx cosx) dx

or

I =

∫ π/2

0

log2

(
1

2
sin(2x)

)
dx =

∫ π/2

0

log2
1

2
dx+

∫ π/2

0

log2(sin(2x)) dx = −π
2
+
I

2
.

Thus, I = −π
2
+ I

2
, or I = −π, making cos I = cos(−π) = cos(π) = −1.

28 (C). Let I =
∫ 1

0
f(x)x2812 dx. By Cauchy-Schwarz,

I2 ≤
(∫ 1

0

(f(x))2 dx

)(∫ 1

0

(x2812)2 dx

)
= (1)

(∫ 1

0

x5624 dx

)
=

1

5625
.

Thus, I2 ≤
√
1/5625, and since I is nonnegative, I ≤ 1/75, so that m/n = 1/75 and

m+ n = 1 + 75 = 76.

2
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