Mu Alpha Theta National Convention: Denver 2001 Integration Topic Test – Solutions

Written by Richard Soliman

1. (C).
$$\int_0^4 x^3 + x + 1 \, dx = \frac{x^4}{4} + \frac{x^2}{2} + x \Big|_0^4 = 76$$

2. (A). Displacement =
$$\int_a^b v(t) dt = \int_0^4 t^3 - 3t^2 + 2t dt = \left. \frac{t^4}{4} - t^3 + t^2 \right|_0^4 = 16$$

- 3. **(B)**. Let u = 2a + 1. Then du = 2 da so $\int (2a + 1)^8 da = \int u^8/2 du = u^9/18 + C = (2a + 1)^9/18 + C$.
- 4. (D). If $\tan u = x$, then $\sec^2 u \, du = dx$ and the integral becomes $\int x^2 (x^2 + 1)^2 \, dx = \int \tan^2 u (\tan^2 u + 1)^2 \sec^2 u \, du = \int \tan^2 u (\sec^2 u)^2 \sec^2 u \, du = \int \tan^2 u \sec^6 u \, du$.
- 5. (B). The graph has roots at $x = \pm 5$ so the area is $\int_{5}^{5} 25 x^2 dx = \frac{500}{3}$.
- 6. **(D)**. The partitions are $\{[0,1],[1,3],[3,7]\}$. Since $f(x)=x^2$ is strictly increasing when x>0, we pick the right endpoint of each subinterval, resulting in an upper sum of $1(1)^2+2(3)^2+4(7)^2=215$.
- 7. **(A)**. Notice the integrand is simply the Product Rule. Thus, $\int_1^3 a'(t)b(t) + a(t)b'(t) dt = a(3)b(3) a(1)b(1) = (7)(15) (5)(3) = 90$.
- 8. (A). The integrand is none other than the Chain Rule. Therefore, $\int_0^1 a'(b(t))b'(t) dt = a(b(1)) a(b(0)) = a(3) a(1) = 7 5 = 2$.
- 9. (C). Let u=t/3. Then du=dt/3 and the integrand transforms into the Quotient Rule

$$\int_0^3 \frac{a'(t/3)b(t/3) - b'(t/3)a(t/3)}{(b(t/3))^2} dt = 3 \int_0^1 \frac{a'(u)b(u) - b'(u)a(u)}{(b(u))^2} du$$
$$= 3 \left(\frac{a(1)}{b(1)} - \frac{a(0)}{b(0)}\right) = -7$$

- 10. (**D**). Given a rate of change function r(t), the total change over a given time interval is the integral of r(t) over the interval. Therefore, the total number of girls in Tom's house after 81 minutes is $\int_0^{81} 20 + 4\sqrt{t} dt = 3564$.
- 11. (A). Recall that if f(x) is an odd function, $\int_a^a f(x) dx = 0$. Thus, the integers chosen must be $\{-5,5\}$, $\{-4,4\}$, $\{-3,3\}$, $\{-2,2\}$, or $\{-1,1\}$. There are $\binom{11}{2} = 55$ ways of choosing the integers without restriction so the probability is 5/55 = 1/11.

12. **(C)**. When $-2 \le x < -1$, x+1 < 0 and if $-1 \le x < 1$, $x+1 \ge 0$ so we can break up the integral as $\int_{-2}^{1} |x+1| dx = \int_{-2}^{1} |-x-1| dx + \int_{-1}^{1} x + 1 dx = 1/2 + 2 = 5/2$

13. **(A)**. Average Value =
$$\frac{1}{b-a} \int_a^b f(n) dn = \frac{1}{2} \int_0^2 n^2 dn = \frac{4}{3}$$

14. (C). If f(x) is an even function, then $\int_a^a f(x) dx = 2 \int_0^a f(x) dx$. Thus

$$\int_{1}^{2} n(z) dz = \frac{1}{2} \left(\int_{2}^{2} n(z) dz - \int_{1}^{1} n(z) dz \right) = \frac{1}{2} (4 - (-6)) = 5$$

15. **(D)**. By setting y-values equal to each other, we see that the graphs intersect at x = -2, 0, and 2. When $-2 \le x \le 0, 3x^3 - x^2 - 10x \ge 2x - x^2$ and when $0 \le x \le 2, 2x - x^2 \ge 3x^3 - x^2 - 10x$. Thus, the total area is given by

$$\int_{2}^{0} (3x^{3} - x^{2} - 10x) - (2x - x^{2}) dx + \int_{0}^{2} (2x - x^{2}) - (3x^{3} - x^{2} - 10x) dx$$

which yields a value of 12 + 12 = 24.

16. (D). Completing the square, we see that $x^2+12x+45=(x+6)^2+9$. By the arctangent integration formula, the answer is

$$\int \frac{dx}{x^2 + 12x + 45} = \int \frac{dx}{(x+6)^2 + 3^2} = \frac{1}{3}\arctan\frac{x+6}{3} + C$$

- 17. (D). The area of the lamina is $\int_{\pi/6}^{\pi/6} \sec^2 x \, dx = 2\sqrt{3}/3$. Therefore, its mass is $(18)(2\sqrt{3}/3) = 12\sqrt{3}$ kilograms.
- 18. (B). The Mean Value Theorem for Integrals states that the a function will equal its average value over an interval. Thus, we have

$$u^2 + 1 = \frac{1}{3} \int_2^5 u^2 + 1 \, du = 14$$

The only solution on the given interval is $u = \sqrt{13}$.

19. **(B)**. It's easy to see from a graph that the limits of integration are the solutions to $10y - 16 - y^2 = 0$ or $\{2, 8\}$. We also know that a < b, or else the value of the integral will be negative. Thus, (a, b) = (2, 8).

20. **(B)**.
$$\int_{e}^{e^{2}} \frac{1}{x} + \frac{1}{x^{2}} dx = \ln|x| - \frac{1}{x} \Big|_{e}^{e^{2}} = \frac{e^{2} + e - 1}{e^{2}}$$

21. (A). By the Second Fundamental Theorem, $F'(t) = (3t^2)\sin(t^3)^2 = 3t^2\sin t^6$.

22. **(B)**.
$$\int \frac{r^2 + 3r^3 - r^5}{r\sqrt{r}} dr = \int r^{1/2} + 3r^{3/2} - r^{7/2} dr = \frac{2}{3}r^{3/2} + \frac{6}{5}r^{5/2} - \frac{2}{9}r^{9/2} + C$$

- 23. **(D)**. We have $\int_0^{\pi} x + \sin x \, dx = \pi^2/2 + 2$ and $\int_{\pi}^{2\pi} x + \sin x \, dx = 3\pi^2/2 2$ so the ratio of the larger area to the smaller is $(3\pi^2/2 2)/(\pi^2/2 + 2) = (3\pi^2 4)/(\pi^2 + 4)$.
- 24. **(A)**. By the Shell Method, the volume is $2\pi \int_0^1 x(x^3 x^2 + x + 1) dx = \frac{47\pi}{30}$.
- 25. **(C)**. We use the area interpretation of the integral. Notice that the graph of $f(x) = \lfloor x \rfloor$ creates a staircase of rectangles each having a width of 1 and a height equal to f(x). There are 10 rectangles on the interval $0 \le x \le 10$, giving us a total area of $1(0+1+2+\cdots+9)=45$.
- 26. **(D)**. From the double-angle formula, $\sin 2x = 2\sin x \cos x$ or $\sin x \cos x = (\sin 2x)/2$. Thus, $\int \sin x \cos x \, dx = \int (\sin 2x)/2 \, dx = -(\cos 2x)/4 + C$.
- 27. (C). We actually want the x^4 -term of $(2x-1)^{12}$ since integration of a polynomial involves adding 1 to the exponent. This term is $\binom{12}{4}(2x)^4(-1)^8 = 7920x^4$. Integration produces $\int 7920x^4 dx = 1584x^5 + C$ so the desired coefficient is 1584.
- 28. **(D)**. If the slope of the normal line at (x,y) is x^2y , then the slope of the tangent line—better known as dy/dx—is equal to $-1/(x^2y)$. Thus, $dy/dx = -1/(x^2y)$. Using separation of variables, we get

$$y dy = -\frac{1}{x^2} dx \to \int y dy = \int -\frac{1}{x^2} dx \to \frac{y^2}{2} = \frac{1}{x} + C$$

Letting x = -2 and y = 1, we get C = 1/2 - (1/(-2)) = 1. Thus, $y^2/2 = 1/x + 1$ or $y^2 = (2x + 2)/x$.

29. (A). We apply Integration by Parts twice, always letting u equal the polynomial part and dv the trigonometric function.

$$\int \theta^2 \cos \theta \, d\theta = \theta^2 \sin \theta - 2 \int \theta \sin \theta \, d\theta$$
$$= \theta^2 \sin \theta - 2 \left(-\theta \cos \theta + \int \cos \theta \, d\theta \right)$$
$$= \theta^2 \sin \theta + 2\theta \cos \theta - 2 \sin \theta + C$$

30. (B). Evaluating the integral, we obtain the recursive sequence $a_{n+1} = 3a_n - 2a_{n-1}$. The next three terms of this sequence are $a_2 = 3a_1 - 2a_0 = 3$, $a_3 = 3a_2 - 2a_1 = 7$, and $a_4 = 3a_3 - 2a_2 = 15$, so we might conjecture that $a_n = 2^n - 1$, which is easily shown to be correct using induction. The sum we seek is

$$\sum_{n=1}^{2001} (2^n - 1) = (2 + 2^2 + 2^3 + \dots + 2^{2001}) - \underbrace{(1 + 1 + 1 + \dots + 1)}_{2001 \text{ ones}}$$
$$= \frac{2(2^{2001} - 1)}{2 - 1} - 2001 = 2^{2002} - 2003$$

31. (D). On the interval $0 \le x \le 2\pi$, the graphs of the sine and cosine intersect at $x = \pi/4$ and $x = 5\pi/4$. The shared area is therefore equal to $\int_{\pi/4}^{5\pi/4} \sin x - \cos x \, dx = 2\sqrt{2}$.

32. **(A)**.
$$\int 10^x dx = \frac{10^x}{\ln 10} + C$$

33. **(A)**. By the Washer Method, the volume is $\pi \int_4^6 (2x)^2 - (x)^2 dx = \pi \int_4^6 3x^2 dx = 152\pi$.

34. **(D)**. Area =
$$\int_{\sqrt{3}/3}^{\sqrt{3}} \frac{x^3 + x + 1}{x^2 + 1} dx = \int_{\sqrt{3}/3}^{\sqrt{3}} x + \frac{1}{x^2 + 1} dx = \frac{x^2}{2} + \arctan x \Big|_{\sqrt{3}/3}^{\sqrt{3}} = \frac{4}{3} + \frac{\pi}{6}$$

- 35. (C). The value of the integral is $\int_0^x 5n^4 1 \, dn = x^5 x$ which, by Fermat's Little Theorem, is divisible by 5 for all integers x. Therefore, the desired sum is simply that of the first 67 natural numbers or (67)(68)/2 = 2278.
- 36. **(B)**. By the Washer Method, the volume is $\pi \int_0^1 (kx^2 + 1)^2 1^2 dx = 56\pi/5$ or after some work, $2k/3 + k^2/5 = 56/5$. The solution set is $k \in \{6, -28/3\}$ so k = 6.
- 37. (C). Plug y = 0 into the identity to obtain $3f(x) + 2f(x) = 5x^2$ or $f(x) = x^2$.
- 38. (C). Given a regular octagon with side length s, its area is given by $A = 2s^2(1+\sqrt{2})$. In this case, the graph of the function gives the side length of the octagon and it follows that the volume is $\int_0^4 2(\sqrt{x})^2(1+\sqrt{2}) dx = 16+16\sqrt{2}$.
- 39. (B). Let $I = \int_0^{\pi/2} (\sin x)/(\sin x + \cos x) dx$. Now consider the integral

$$J = \int_0^{\pi/2} \frac{\cos x}{\sin x + \cos x} \, dx$$

Notice that I = J since $\cos x$ attains the same values as $\sin x$ on the interval $[0, \pi/2]$, only in reverse order (verify this by drawing the respective graphs). Adding the two integrals, we get

$$I + J = 2I = \int_0^{\pi/2} \frac{\sin x + \cos x}{\sin x + \cos x} dx = \int_0^{\pi/2} dx = \frac{\pi}{2}$$

Thus, $I = \pi/4$.

40. **(D)**. By the Shell Method, the volume is $2\pi \int_3^5 x(3x-2x) dx = 2\pi \int_3^5 x^2 dx = \frac{196\pi}{3}$.