Question	Solution
P1.	We have $x = \frac{20+10}{3} = 10$.
P2.	We have $\sec^4 \frac{5\pi}{6} = \left(-\frac{2}{\sqrt{3}}\right)^4 = \frac{16}{9}$.
P3.	Since ln 2013 is a constant, the answer is 0 .
P4.	The answer is $5(10 - 0) = 50$.
P5.	We have $A^{c} + (D \div \sqrt{9B + 16/B}) = 10^{0} + (50 \div \sqrt{16 + 9}) = 11.$
1.	Rewrite as $\sqrt{10-x} - \sqrt{4-x} = 2$, then square both sides and simplify to obtain $5-x = \sqrt{(10-x)(4-x)}$. Square both sides again and simplify and get $25-10x+x^2=40-14x+x^2$, or $4x=15$, thus $x=15/4$.
2.	The desired amplitude is $\sqrt{2^2 + (-2\sqrt{3})^2} = 4$.
3.	By L'Hopital's Rule, $\lim_{x\to 0} \frac{1-\cos(2013x)}{x} = \lim_{x\to 0} \frac{2013\sin(2013x)}{1} = 0.$
4.	For this problem, a Power Series approximation might be more efficient than multiple applications of L'Hopital's Rule. We have $\lim_{x\to 0} \frac{16-16\cos x^2}{x\sin x^3} = \frac{16-16\left(1-\frac{x^4}{2!}+\frac{x^8}{4!}-\cdots\right)}{x\left(x^3-\frac{x^9}{3!}+\cdots\right)} = \frac{\frac{16}{2!}-\frac{16x^4}{4!}+\cdots}{1-\frac{x^6}{3!}+\cdots} = \frac{\frac{16}{2!}-0+0-\cdots}{1-0+0-\cdots} = \frac{16}{2!} = 8.$
5.	We have $AB + CD = \left(\frac{15}{4}\right)(4) + (0)(8) = 15.$
6.	Perfect squares have an odd number of positive divisors, hence it is for those values that the Tau Function will be congruent to 1 in modulo 2. The set of

	positive integer perfect squares less than 200 is $\{1^2, 2^2,, 14^2\}$, having 14 elements.
7.	The graph of $y = f(x) = x + \sin x + e^x$ is strictly increasing. Since $f(0) = 1$ and $f(5) > 2$, we know there is one solution on the interval $x \in (0,5)$. Because f is strictly increasing, there is exactly 1 solution.
8.	We have $f(h) = \frac{(10+h)^2 - 100}{h} = \frac{100 + 20h + h^2 - 100}{h} = 20 + h$, so $\frac{df}{dh} = 1$ for all h, making $f(10) + f'(10) = 30 + 1 = 31$.
9.	The limit represents the derivative of $f(x) = 1024 \ln x$ evaluated at $x = 2$. The answer is $f'(2) = \frac{1024}{2} = 512$.
10.	The determinant is equal to $BD - AC = (1)(512) - (14)(31) = 78$.
11.	The polynomial factors as $(2x + 1)(x^2 - 4) = 0$, so the sum of the roots is $-\frac{1}{2}$. Note that this is the same value obtained via the " $-b/a$ " trick, only because there are no imaginary roots.
12.	The equation simplifies to $\sin(2\theta)=0$, or $\theta=\frac{\pi n}{2}$ for integer n . Since we have the restriction $\pi<\frac{\pi n}{2}\leq 5\pi$, we must have $2< n\leq 10$. The sum of all solutions is $\sum_{n=3}^{10}\frac{\pi n}{2}=\frac{\pi}{2}(55-3)=26\pi$.
13.	By L'Hopital's Rule, $L = \lim_{h \to 0} \frac{f(1+2h)-2f(1+h)+f(1)}{h^2} = \lim_{h \to 0} \frac{2f'(1+2h)-2f'(1+h)}{2h} = \lim_{h \to 0} \frac{f'(1+2h)-f'(1+h)}{h} = \lim_{h \to 0} \frac{2f''(1+2h)-f''(1+h)}{1} = 2f''(1) - f''(1) = f''(1).$ For $f(x) = \arctan x$, we have $f''(x) = -\frac{2x}{(x^2+1)^2}$, and so $L = f''(1) = -\frac{1}{2}$, making $100L = -50$.

	1 2
	If $\sin \theta = 3 \cos \theta$, then $\cos \theta = \frac{1}{\sqrt{10}}$ and $\sin \theta = \frac{3}{\sqrt{10}}$. If $T(x) = \sin(2x)$, then
14.	$T'(x) = 2\cos(2x) = 2\cos^2 x - 2\sin^2 x, \text{ so } T'(\theta) = 2\left(\left(\frac{1}{\sqrt{10}}\right)^2 - \left(\frac{3}{\sqrt{10}}\right)^2\right) = -\frac{8}{5}.$
	Therefore, $25T'(\theta) = -40$.
15.	We have $C \cos(AB) + D = -50 \cos(-13\pi) + -40 = 50 - 40 = 10$.
	If $ x - 7 \le 8$, then $-8 \le x - 7 \le 8$, or $ x \le 15$, or $-15 \le x \le 15$ since the
16.	absolute value of any number must be at least 0. There are 31 integers in this interval.
17.	The slope of the line needs to equal $\tan 30^\circ = 1/\sqrt{3}$. From the given equation, the
271	slope of the line is $2/k$. Thus, $k = 2\sqrt{3}$, or $k^4 = 144$.
18.	Using Integration by Parts, we have $\int_0^{\pi} x \sin \frac{x}{2} dx = 4 \sin \left(\frac{x}{2}\right) - 2x \cos \left(\frac{x}{2}\right) \Big _0^{\pi} = 4$.
19.	Using Integration by Parts, we have $\int_1^e 16x^3 \ln x \ dx = 4x^4 \ln x - x^4 \Big _1^e = 3e^4 + 1$.
20.	We have $2 \ln \left(\frac{A+D-2}{3} - \frac{B-11C}{10} \right) = 2 \ln \left(\frac{31+3e^4+1-2}{3} - \frac{144-11(4)}{10} \right) = 2 \ln e^4 = 8.$
	Notice that $39^2 + 52^2 = 25^2 + 60^2$. Thus, the quadrilateral in question consists
24	of two right triangles glued together at their hypotenuse. The area is therefore
21.	equal to $\frac{(39)(52)+(25)(60)}{2} = 1764$.
22.	The side length of the cube is $\cos x$. We have $6(\cos x)^2 = 36/17$, or $\cos^2 x = \frac{6}{17}$.
	so $\sin^2 x = 1 - \frac{6}{17} = \frac{11}{17} = \frac{m}{n}$, making $m + n = 28$.
0.0	Let (x, y) represent a point in C in the neighborhood of $(0, 6)$. The description of
23.	Let (x, y) represent a point in C in the neighborhood of $(8, 6)$. The description of the locus yields the equation $\sqrt{x^2 + y^2} - 1 = y + 3$, or $x^2 = 8y + 16$. Implicit
	y

	differentiation yields $2x = 8\frac{dy}{dx}$, so the desired slope is $\frac{dy}{dx} = \frac{2x}{8} = \frac{2(8)}{8} = 2$.
24.	The expected value is given by $\int_0^{\pi/2} \left(\frac{8x}{\pi^2}\right) (3\pi^2 \sin x) dx = 24$. Use Integration by Parts to evaluate the integral.
25.	We have $\frac{A}{B} + \frac{D}{C} = \frac{1764}{28} + \frac{24}{2} = 75$.
26.	Observe that M is a sort of permutation-scaling matrix, where the first element goes to the fourth position and gets scaled by $\frac{1}{4}$, the second element goes to the first position without scaling, etc. Using this reasoning, we can go backwards and deduce that $M^{-1} \times \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 4d \\ a \\ 2b \\ \frac{c}{3} \end{bmatrix}$, making $M^{-1} = \begin{bmatrix} 0 & 0 & 0 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \end{bmatrix}$, so the sum of the elements of $3M^{-1}$ is $3\left(4+1+2+\frac{1}{3}\right)=22$.
27.	The given function can be written as $f(x) = 1 - \frac{3}{4}\sin^2 x$, having maximum value of 1 and minimum value of $\frac{1}{4}$. The midpoint of I is $\frac{5}{8}$.
28.	The first term of the integrand is an odd function, so its definite integral on an interval symmetric to the origin is equal to 0. The answer is $\int_3^{-3} x^2 dx = -18$.
29.	We have $f'(x) = 1 + 7x^6$. By inspection, $f(1) = 3$ and thus, $g(3) = 1$. We have $1024g'(3) = \frac{1024}{f'(1)} = \frac{1024}{8} = 128$.
30.	We have $A + BD + C = 22 + \left(\frac{5}{8}\right)(128) + -18 = 84$.
31.	Suppose P has degree n . The left-hand side of the equation has degree $2n$ while the right-hand side has degree of $n+1$. Therefore, $n=1$ and P is a linear

	function, say $P(x) = mx + b$. Substitute this into the equation to obtain
	$mx^2 + b + 2x^2 + 10x = 2x(m(x+1) + b) + 3$, and combine like-coefficients to
	get $(m + 2)x^2 + 10x + b = 2mx^2 + (2b + 2m)x + 3$. Setting corresponding
	coefficients to each other yields $m = 2$ and $b = 3$, so $P(x) = 2x + 3$ and
	P(100) = 2(100) + 3 = 203.
	From the Extended Law of Sines, $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$. Adding up these three
	equations yields $\sin \alpha + \sin \beta + \sin \gamma = \frac{a+b+c}{2R} = \frac{p}{2R} = \frac{5}{2(1)} = \frac{5}{2}$.
32.	(Note: Inscribed triangles in the unit circle with a perimeter of 5 <i>is</i> possible. For example, pick one vertex to be at (1,0), the second at (0,1), and the third to be
	near the point $\left(\cos\frac{5\pi}{4},\sin\frac{5\pi}{4}\right)$. Such a triangle will have perimeter greater than 5.
	By continuity, a perimeter of exactly 5 is attainable.)
	by continuity, a perimeter of exactly 5 is attainable.
	By the Product Rule, $f'(x) = (x-1)(x+1)^4(7x-3)$, yielding the critical point
33.	set of $S = \{-1, \frac{3}{7}, 1\}$. Therefore, $\cos \theta = c = 3/7$ and $\cos(2\theta) = 2\left(\frac{3}{7}\right)^2 - 1 = -\frac{31}{49}$,
	making $m = 31$ and $n = 49$. The answer is $31 + 49 = 80$.
	b
2.4	Note that $f(a,b)$ can be written as $f(a,b) = \int_a^b (20x - 16 - 4x^2) dx$, where
34.	$0 < a < b$. The integrand has zeroes at $x \in \{1, 4\}$, so set $a = 1$ and $b = 4$ to
	obtain the maximum value for f . We have $f(1,4) = 18$.
35.	We have $-A + BC + D = -203 + \left(\frac{5}{2}\right)(80) + 18 = 15.$
	Let P equal the intersection of the medians BE and AD. Point P divides the
36.	medians into a 2:1 ratio, so AP = 4 and EP = 3. Triangle APE is a right triangle
	with area 6, which happens to be one-sixth the area of ABC. The answer is 36 .

	The slope of the segment connecting the endpoints is 1; therefore, θ must be coterminal to $\frac{\pi}{4}$, or $\theta = \frac{\pi}{4} + 2\pi n$ for integer n . The r -values for each endpoint are
37.	$(\sqrt{2})\sqrt{2} = 2$ and $(64\sqrt{2})\sqrt{2} = 128$. Thus, we have $2^1 \le 2^{\frac{2\theta}{\pi}} \le 2^7$, or $\frac{\pi}{2} \le \theta \le \frac{7\pi}{2}$.
	Therefore, $\frac{\pi}{2} \le \frac{\pi}{4} + 2\pi n \le \frac{7\pi}{2}$, leading to a singular answer of $n = 1$. There is only
	1 intersection point.
38.	Rewrite the integral as $2\int_1^{25} \frac{1}{2\sqrt{x}(1+\sqrt{x})} dx$ and let $u=1+\sqrt{x}$, so that the integral
	transforms to $2 \int_2^6 \frac{1}{u} du = 2 \ln \frac{6}{2} = 2 \ln 3 = \ln 9$. If $I = \ln 9$, then $e^I = 9$.
	On the interval $x \in [0, \pi/2]$, $\sin x$ and $\cos x$ attain the same values, only in reverse
39.	order. Therefore, $I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$, and adding
	these two equations together yields $2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \int_0^{\pi/2} 1 dx = \frac{\pi}{2}$,
	making $I = \frac{\pi}{4}$.
40.	We have $ABC \tan D = (36)(1)(9) \tan \frac{\pi}{4} = 324$.
	If $S = \{1\}$, then $\sum_{n=1}^{1} \frac{1}{\prod(S_n)} = 1$. If $S = \{1, 2\}$, then $\sum_{n=1}^{3} \frac{1}{\prod(S_n)} = 2$. In general, it can
41.	be proven by induction that if $S = \{1, 2, 3,, n\}$, then $\sum_{n=1}^{2^n-1} \frac{1}{\prod (S_n)} = n$, so for this
	problem the answer is 4 .
	Let θ denote the angle opposite the side with length a . We have $\sin(2\theta) =$
42.	$2\sin\theta\cos\theta = 2\left(\frac{a}{2\sqrt{ab}}\right)\left(\frac{b}{2\sqrt{ab}}\right) = \frac{1}{2}$. Thus, $2\theta = 30^{\circ}$ or $\theta = 15^{\circ}$.
	The terms in the sum $\sum_{n=1}^{2013} \frac{d^n y}{dx^n}$ repeat with a period of 4, and the sum of those
43.	repeating four terms is $\cos x - \sin x - \cos x + \sin x = 0$. Since $2013 = 503(4) + 1$
	$1, F(x) = \sin x + 503(0) + \cos x = \sin x + \cos x, \text{ making } F(\pi) = -1.$

	First, use the Sum-to-Product Identities to simplify the function before
44.	differentiating. We have $f(x) = \frac{\cos(5x) + \cos(3x)}{\sin(5x) - \sin(3x)} = \frac{2\cos\frac{5x + 3x}{2}\cos\frac{5x - 3x}{2}}{2\cos\frac{5x + 3x}{2}\sin(\frac{5x - 3x}{2})} = \cot x$, so that
	$f'(x) = -\csc^2 x$. Thus, $f'\left(\frac{\pi}{4}\right) = -2$.
45.	We have $ABCD = (4)(15)(-1)(-2) = 120$.
	Since $2(3n + 5) - 3(2n + 3) = 1$, $3n + 5$ and $2n + 3$ are relatively prime. Also,
16	since $2210 = 2 \times 5 \times 13 \times 17$, we have $\frac{2210}{(3n+5)(2n+3)} = \frac{2 \times 5 \times 13 \times 17}{(3n+5)(2n+3)} =$
46.	$5\frac{(2\times13)(17)}{(3n+5)(2n+3)}$. Setting $3n+5=26$ and $2n+3=17$ yields $n=7$. Turns out this
	is the only valid value for n .
47.	By the Sum-and-Difference Formulae, the left-hand-side of the equation simplifies
	to $\sin \frac{2x+4x}{3} \cos \frac{16x-6x}{5} = \sin(2x) \cos(2x)$, or $\frac{1}{2} \sin(4x)$ by the Double-Angle
	Formula for sine. Thus, the equation is $\frac{1}{2}\sin(4x) = \frac{1}{4}$, and $4x = \frac{\pi}{6}$, making
	$x=\pi/24.$
	If $f'(x) = g'(x)$, then $f'(x) - g'(x) = 0$, and after integrating both sides,
48.	f(x) - g(x) = C for all real x . The given information indicates that $C = 5$, so the
	desired integral has value $5(10 - (-10)) = 100$.
49.	Since $12\sin(3x) + 5\cos(3x) = 13\sin(3x + \phi)$, where $\tan \phi = \frac{5}{12}$, we have
	$f(x) = 13e^x \sin(3x + \phi)$ and $f(0) = 5$. Differentiating, we get $f'(x) = f(x) + \phi$
	$39e^x \cos(3x + \phi)$, so $f'(0) = f(0) + 39\cos\phi = 5 + 36 = 41$. Differentiating
	again, we get $f''(x) = 2f'(x) - f(x) - 117e^x \sin(3x + \phi)$, making $f''(0) =$
	$2(41) - 5 - 117\left(\frac{5}{13}\right) = 32$. Combining these results yields $32 - 6(41) + 9(5) =$
	−169 .

50.	We have $A + 4\cos^2(BC) - D = 7 + 4\cos^2\frac{100\pi}{24} - (-169) = 179$.