Question 1

If today is March 1, 2014, how many days remain until February 1, 2015?

Question 5

Of 6,000 apples harvested, every third apple is too small, every fourth apple is too green, and every tenth apple is bruised. The remaining apples are perfect. How many perfect apples are harvested?

Answer:	

Answer: _____

Question 2

Given that $\log_2 (\log_3 (\log_4 x)) = \log_3 (\log_2 (\log_4 y)) = \log_4 (\log_3 (\log_2 z)) = 0$, find x + y + z.

Question 6

The three, two-digit integers 30, 72, and *N* have the property that the product of any two of them is divisible by the third. What is the value of *N*?

Answer:	
---------	--

Answer: _____

Question 3

From a group of boys and girls, 15 girls leave. There are then two boys left for each girl. After this, 45 boys leave. There are then five girls for each boy. How many girls were there in the beginning?

Question 7

How many times do the graphs of the parabolas $y = 3x^2 + 5x + 2$ and $y = x^2 - 2x - 8$ intersect?

Answer:

Answer: _____

Question 4

The position of a particle moving along the *x*-axis is given by $x(t) = 3t^3 - 2t^2 + t - 1$. What is the total distance traveled by the particle from t = 0 to t = 3?

Question 8

Evaluate:

$$\lim_{q \to 3} \frac{\left((3+q)^2 - 3(3+q) \right) - (3^2 - 3 \cdot 3)}{q}$$

Answer:	

Answer: _____

What is the sum of the answers for Questions 1-8?

Sum = _____

Ouestion	1

Evaluate: $245^2 - 235^2$

Question 5

In how many quadrants do points that satisfy -3y - x < 5 and -3x < -4 lie?

Answer: _____

Answer: _____

Question 2

For how many positive integer values of n are both n/5 and 5n equal to positive four-digit integers?

Question 6

How many positive three-digit numbers are perfect numbers, perfect squares, or perfect cubes?

Answer: _____

Question 3

How many of the following series diverge?

i)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

ii)
$$\sum_{n=2}^{\infty} \frac{n}{3^{n}+4}$$

i)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 ii) $\sum_{n=2}^{\infty} \frac{n}{3^{n}+4}$ iii) $\sum_{n=2}^{\infty} \left(n\left(\frac{1}{3}\right)^{n}\right)$ iv) $\sum_{n=4}^{\infty} \frac{1}{n \ln n}$

iv)
$$\sum_{n=4}^{\infty} \frac{1}{n \ln n}$$

Question 7

A dodecahedron has twelve pentagonal faces. A face diagonal is a line segment that lies along a face of a polyhedron and connects two nonadjacent vertices. How many face diagonals does a regular dodecahedron have?

Answer: _____

Answer: _____

Question 4

Find the sum of the first fifteen terms of the arithmetic sequence: −4, 1, 6, 11,...

Question 8

How many positive three-digit integers do not have 3 as a digit?

Answer: _____

Answer: _____

What is the sum of the answers for Questions 1-8?

Question	1
Ouesuon	

Evaluate: $103^2 - 97^2 + 13^2 + 39^2$

Question 5

Evaluate $\int_0^{15} [x] dx$, where [x] represents the greatest integer less than or equal to x.

Answer: _____

Answer: _____

Question 2

How many solutions x to $2 \sin^2 x - \sin x = 1$ exist in the interval $x \in (0,2\pi)$?

Question 6

What is the area of the region $|x| + |y| \le 5$ in the Cartesian Plane?

Answer: _____

Answer: _____

Question 3

Given that t and g are differentiable functions, and that t(3) = 7, t'(3) = 2, t(6) = 9, t'(6) = 3, g(2) = 5, and g'(2) = 4; if C(x) = t(3x)g(x), determine the value of C'(2).

Question 7

What is the multiplicative inverse of 14 in modulo 41?

Answer: _____

Answer: _____

Question 4

Victor takes a test where he receives five points for a correct answer and loses three points for an incorrect answer. Assuming Victor answers 20 questions on the test, how many questions did he answer correctly if he earned 52 points?

Question 8

If the base 10 number 365,88A is a multiple of 11, what is the value of the digit A?

Answer: _____

Answer: _____

What is the sum of the answers for Questions 1-8?

Question 1

How many solutions x to $2 \sin^2 x + 3 \cos x = 3$ exist in the interval $x \in (0,2\pi)$?

Answer: _____

Question 2

If the graph of $y = f(x) = -x^2 + 2x + q$ has a maximum ordinate value of 6 at x = 1, find the value of f(2).

Question 5

What is the largest integer value of *x* such that 100! is divisible by 2^x ?

Answer: _____

Answer: _____

Question 6

Express the following difference as a base 10 number:

 $412_7 - 136_7$

Answer: _____

Question 3

Which Greek mathematician developed a fairly accurate estimate for the circumference of the earth and a "sieve" for determining prime numbers? Answer with the number 1, 2, 3, or 4, corresponding to the correct answer.

- 1) Archimedes
- 2) Aristarchus
- 3) Eratosthenes
- 4) Euclid

Question 7

The number 210 can be written as a sum of consecutive positive integers in several ways. When written as the sum of the greatest possible number of consecutive positive integers, what is the largest of these integers?

Answer: _____

Answer: _____

Question 4

In the expansion of $(2x - y)^{10}$ with like-terms combined, find the coefficient of the x^2y^8 term. **Question 8**

Evaluate: $\log_4(16^{500})$

Answer: _____

Answer: _____

What is the sum of the answers for Questions 1-8?

Question 1

If A is a 5 \times 5 matrix with a determinant of 6, what is the determinant of the matrix 5A?

Question 5

How many integers *x* satisfy the following inequality?

$$\left|3 - \frac{2x}{3}\right| < 20$$

Answer: _____

Answer: _____

Question 2

Find the greatest common factor of 20! and 200000.

Question 6

How many of the following series converge?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}, \quad \sum_{n=1}^{\infty} \left((n+1) \left(\frac{2}{3} \right)^{n+1} \right), \quad \sum_{n=1}^{\infty} \frac{1}{n^2 + n + 3},$$

$$\sum_{n=1}^{\infty} \frac{7^{n-1}}{3^{n+1}}, \qquad \sum_{n=1}^{\infty} \sqrt{\frac{3n+1}{4n-3}}$$

Answer: _____

Answer: _____

Question 3

If a + b = 4 and ab = 7, evaluate: $a^2 + b^2$

Question 7

Evaluate: (log₂ 25)(log₅ 8)(log₃ 49)(log₇ 243)

Answer: _____

Answer: _____

Question 4

If the cost C of producing x widgets is $C = 40\sqrt{x} + \frac{x^2}{400}$, how many widgets need to be produced to minimize the cost per widget. Assume that a fractional number of widgets is allowed.

Question 8

Evaluate $\sum_{n=1}^{144} \frac{\sqrt{n}}{2}$ and round your answer to the nearest integer.

Answer: _____

Answer: _____

What is the sum of the answers for Questions 1-8?

Question 1

If the value of the definite integral

$$\int_{2}^{3} \frac{x^4 - 2x^3 + 3x^2 - 2x + 1}{(x^3 - 3x + 1)^2} dx$$

can be written as m/n, where m and n are relatively prime positive integers, find m+n.

Answer: _____

Question 2

For how many integer values of x does $x^2 + 2x - 19$ have a negative value?

Answer: _____

Question 3

Solve for $x: 2^{4x+8} \cdot 4^{2x+3} = 8^{2x+6}$

Answer: _____

Question 4

Evaluate: $\begin{vmatrix} 3 & 1 & 0 & 2 \\ 4 & -1 & -2 & 1 \\ 2 & 2 & -2 & 1 \\ 2 & 3 & 6 & 0 \end{vmatrix}$

Answer: _____

Question 5

If six fair, two-sided coins are flipped, the probability of obtaining more than two heads is m/n, where m and n are relatively prime positive integers. Find m+n.

Answer: _____

Question 6

If $\frac{dy}{dx} = 3x^2$ and y(-1) = 2, then find the value of

$$\int_0^2 y(x) \, dx.$$

Answer: _____

Question 7

How many ways can six indistinguishable pieces of candy be distributed among three children, provided there is no requirement that each child receive at least one piece of candy?

Answer: _____

Question 8

Find the sum of all positive, two-digit integers that are multiples of 4.

Answer: _____

What is the sum of the answers for Questions 1-8?

Question 1

A triangle with vertices at (1,4), (2,7), and (3,-1) is subjected to a linear transformation represented by the matrix $\begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}$, resulting in a new triangle. What is the area of this new triangle?

Question 5

What number, when added to the numerator and denominator of 5/8, results in a fraction whose value is equal to 0.40?

Answer: _____

Question 2

If $\int_0^4 (x^2 - 6x + 9) dx$ is approximated by four inscribed rectangles of equal width along the x-axis, what is the value of the approximation?

Question 6

Find the remainder when 41^{100} is divided by 29.

Answer:	
Allowel.	

Answer: _____

Question 3

If $\log_{16} 2 = 1/4$, find the value of $\log_8 4096$.

Question 7

The Fibonacci Sequence F is defined by $F_1 = F_2 = 1$ and for integers n, $F_{n+2} = F_{n+1} + F_n$. Find the value of $F_{-11} + F_6$.

_	
Answer:	

Answer: _____

Question 4

When listing out the digits of $\lfloor 10^{2013}\pi \rfloor$ from left to right, which of the digits 0 to 9, inclusive, is the last one to make its first appearance?

Question 8

Find the maximum value of the function $f(x) = 2x^3 - 9x^2 + 12x - 1$ on the interval $x \in [-1,2]$.

Answer: _____

What is the sum of the answers for Questions 1-8?

Question 1

In how many ways can 36 be written as a product of the form abcd, where a, b, c, and d are positive integers such that $a \le b \le c \le d$?

Answer: _____

Question 2

The first three terms of an arithmetic sequence are x + 3, 3x - 1, and 7x - 3, in that order. What is the numerical value of the product of the first three terms of the sequence?

Ouestion 5

The arclength of the graph of $y = x^{3/2}$ on the interval $x \in \left[0, \frac{4}{3}\right]$ is equal to $\frac{m}{n}$, where m and nare relatively prime positive integers. Find m + n.

Answer: _____

Question 6

In the following system, find x - y - z, given that x, y, and z are rational numbers.

$$2^{x}3^{y}5^{z} = 7500$$
$$3^{x}5^{y}2^{z} = 720$$
$$5^{x}2^{y}3^{z} = 4050$$

Answer: _____

Question 3

Evaluate:

$$\sum_{n=1}^{10} n^3$$

Answer: _____

Question 4

A ball was floating in a lake when the lake froze. The ball was removed without breaking the ice, leaving a hole 24 centimeters across the top and 8 centimeters deep. What was the radius of the ball? Express your answer in centimeters.

Answer: _____

Answer: _____

Question 7

For how many positive integers n is n! - 1divisible by *n*?

Answer: _____

Question 8

A cube is made up of 27 fair, six-sided dice. Each die's opposite sides add up to 7. What is the smallest possible sum of all the values visible on the six faces of the large cube?

Answer: _____

What is the sum of the answers for Questions 1-8?

Question 1

Two tangent lines can be drawn from the point (-2, -2) to the graph of $y = f(x) = x^2 + 2x + 3$. Find the sum of the *x*-coordinates of the points where those lines are tangent to the graph of y = f(x).

Question 5

The repeating decimal . $4\overline{75}$ is equal to m/n, where m and n are relatively prime positive integers. Find m+n.

_		
Answer:		
AHSWEL.		

Answer: _____

Question 2

What is the smallest positive integer that can be expressed as the sum of two positive perfect cubes in exactly two distinct ways?

Question 6

Evaluate: $998^2 - 999^2$

Answer	
--------	--

Answer: _____

Question 3

In triangle ABC, $\tan A = 5/12$ and $\sec B = 5/3$. If $\sin C = m/n$, where m and n are relatively prime positive integers, find m + n.

Question 7

If Kevin invests \$52000 at a 4% annual interest rate compounded continuously, how many years will it take for Kevin's investment to triple? Express your answer to the nearest year.

Answer: _____

Question 4

A sequence of functions is defined as $f_1(x) = x - 1$ and $f_n(x) = 2f_{n-1}(x)$ for n > 1. Find $f_{10}(2)$.

Question 8

How many of the following series diverge?

$$\sum_{n=1}^{\infty} \frac{2}{3^n}$$
, $\sum_{n=1}^{\infty} \left(\frac{5}{3}\right)^n$, $\sum_{n=1}^{\infty} \frac{2}{3^n}$, $\sum_{n=1}^{\infty} \frac{2}{n^3}$, $\sum_{n=1}^{\infty} \frac{2n}{3^n}$

Answer: _____

Answer:

What is the sum of the answers for Questions 1-8?

Question 1

The ellipse $x^2 + 4y^2 - 4x + 40y = 152$ has major and minor axes lengths of R_1 and R_2 , respectively. Find $R_1 + R_2$.

Answer: _____

Question 2

Let $i = \sqrt{-1}$. Given that $(2i + 7)^3 = a + bi$, where a and b are real numbers, find the ratio of a to b. Express your answer to the nearest integer.

_		
Answer:		

Question 3

For real number x, the expression

$$L = \log_5(\log_4(\log_3(\log_2 x)))$$

is a well-defined real number when x > c; otherwise L is not a well-defined real number. Find the value of c.

Answer: _____

Question 4

The area of the region in the first quadrant bounded by the graphs of $y = \sqrt{x}$ and $y = x^2$ is equal to m/n, where m and n are relatively prime positive integers. Find $n^2 - m^2$.

_		
Answer:		

Question 5

Let x equal the sum of all two-digit positive prime numbers. Which of the following from 1 to 5 is correct regarding x? Answer with the number that corresponds to the correct answer.

- 1. *x* is a prime number.
- 2. *x* is a deficient number
- 3. *x* is an abundant number.
- 4. *x* is a perfect number.
- 5. None of 1 to 4.

Answer:

Question 6

A woman born in the first half of the nineteenth century was x years old in the year x^2 . In what year was she born?

Question 7

A tire with a radius of length two feet travels one mile. How many complete revolutions does the tire make?

Answer:	

Question 8

The lines 2x - 3y = 4 and 4x + ky = 13 are parallel. Find the value of k.

Answer: _____