2002 Mu Alpha Theta National Convention

Probability topic Test- Theta Division

- 1. In a drawer are 24 socks; 10 red, 8 white, and 6 blue. If 3 socks are drawn at random, what is the probability of getting one of each color?

 - (A) $\frac{5}{144}$ (B) $\frac{10}{253}$ (C) $\frac{30}{253}$ (D) $\frac{60}{253}$ (E) NOTA

- 2. In a family of 5 children, what is the probability exactly 3 are girls?
 - (A) $\frac{5}{16}$ (B) $\frac{1}{32}$ (C) $\frac{3}{5}$ (D) $\frac{9}{32}$

- (E) NOTA
- 3. In a drawer are 27 socks; 8 blue, 6 black, 4 green, and 9 white. What is the smallest number you must randomly draw to have a probability of 1 that you have a pair of white socks?
 - 8 (A)
- (B) 12
- (C) 16
- (D) 20
- (E) NOTA
- 4. In order, Anna, Beth, and Carrie take turns flipping the same fair coin. The first one to toss a head wins. What is the probability that Beth wins?
 - (A) $\frac{1}{4}$ (B) $\frac{2}{7}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

- (E) NOTA
- 5. The digits 2,4,6,and 7 are each used once to form a 4-digit number. What is the probability that the number is divisible by 4?

 - (A) $\frac{1}{4}$ (B) $\frac{7}{24}$ (C) $\frac{1}{3}$ (D) $\frac{4}{9}$
- (E) NOTA

	(A) $\frac{2}{7}$	(B) $\frac{4}{15}$	(C) $\frac{1}{3}$	(D) $\frac{5}{14}$	(E) NOTA			
7.	·	•			nat is the probability that be exactly 16 cents?			
	$(A)\frac{1}{27}$	(B) $\frac{2}{27}$	(C) $\frac{2}{9}$	(D) $\frac{8}{15}$	(E) NOTA			
8.	Three coins are draware heads?	opped to the floor.	If at least 2 of the	em are heads, wh	at is the probability all three			
	(A) $\frac{1}{8}$	(B) $\frac{3}{4}$	$(C)\frac{1}{4}$	$(D)\frac{1}{2}$	(E) NOTA			
9.	Two 6-sided dice are rolled. What is the probability the total is prime?							
	(A) $\frac{5}{12}$	(B) $\frac{13}{36}$	(C) $\frac{1}{3}$	(D) $\frac{5}{11}$	(E) NOTA			
10.	Three 6-sided dice are rolled. What is the probability that the total is 10?							
	(A) $\frac{1}{8}$	$(B)\frac{1}{9}$	(C) $\frac{1}{16}$	$(D)\frac{1}{6}$	(E) NOTA			
11.	1. In a hopper are 26 ping-pong balls, each labeled with a different letter of the alphabet. If balls are							

6. The sum of the digits in a positive integer less than one thousand is 4. What is the probability the

integer is prime?

(A) $\frac{7}{260}$ (B) $\frac{2}{65}$ (C) $\frac{21}{260}$ (D) $\frac{11}{130}$ (E) NOTA

before you get 2 consonants?

selected randomly without replacement, what is the probability you will get 2 vowels (A,E,I,O,U)

	(A) $\frac{625}{46656}$	(B) $\frac{3125}{15552}$	(C) $\frac{12}{46}$	2281 6656	(D) $\frac{1}{3}$	(E) NOTA		
13.	Find the probabilit	y that a random poi	nt on the interior	of a circle of radiu	s 3 is more than 2	2 units		
	$(A)\frac{1}{3}$	$(B)\frac{4}{9}$	$(C)\frac{1}{2}$	(D) $\frac{5}{9}$	(E) NOTA			
14.	14. Kelly tosses 19 fair coins and Jessica tosses 20 fair coins. What is the probability that Jessica gets more heads than Kelly?							
	$(A)\frac{19}{39}$	$(B)\frac{1}{2}$	(C) $\frac{20}{39}$	$(D)\frac{5}{8}$	(E) NOTA			
15.	At the start a jar c	ontains only quarter	rs and coins of les	sser value. The a	verage value of th	nese		
	coins is 9 cents. Adding a quarter to the jar raises the average value to 11 cents. Find the probability that a coin randomly selected from the jar at the start is a quarter.							

(A) $\frac{2}{9}$ (B) $\frac{1}{4}$ (C) $\frac{2}{7}$ (D) $\frac{1}{3}$ (E) NOTA

showing are unpainted?

16. A cube measuring 3 inches on a side is painted and then cut into 27 cubes measuring 1 inch on a

side. One of the cubes is randomly selected and tossed. What is the probability all 5 of the faces

(A) $\frac{1}{27}$ (B) $\frac{2}{27}$ (C) $\frac{1}{9}$ (D) $\frac{7}{27}$ (E) NOTA

12. If a six- sided die is rolled six times, what is the probability of two or more 5's?

For problems 17-19 use the information that follows. You have 2 hoppers. One has 15 ping pong balls numbered 1-15. The other has 25 ping pong balls numbered 1-25. If one ball is randomly selected from each hopper find the probability of each event.

17	7 Bo	nth a	re e	ven	num	bers

- (A) $\frac{104}{375}$ (B) $\frac{28}{125}$ (C) $\frac{19}{80}$ (D) $\frac{1}{4}$

- (E) NOTA

- (A) $\frac{49}{75}$ (B) $\frac{41}{75}$ (C) $\frac{4}{9}$ (D) $\frac{13}{40}$

- (E) NOTA

- (A) $\frac{13}{25}$ (B) $\frac{20}{39}$ (C) $\frac{1}{2}$ (D) $\frac{188}{375}$
- (E) NOTA

- (A) 1013
- (B) 731
- (C) 366
- (D) 730
- (E) NOTA

- (A) $\frac{66}{54145}$ (B) $\frac{33}{54145}$ (C) $\frac{33}{66640}$ (D) $\frac{33}{16660}$ (E) NOTA

(/	A) $\frac{3}{8}$	(B) $\frac{1}{4}$	(C) $\frac{1}{8}$	(D) $\frac{5}{16}$	(E) NOTA	
23.	You have 27 coins	that have a total va	alue of 79 cents.	All the coins are p	pennies or nickels. What is	
	the probability that	a coin selected at	random is a penn	y?		
	$(A)\frac{4}{27}$	(B) $\frac{1}{3}$	(C) $\frac{14}{27}$	(D) $\frac{19}{27}$	(E) NOTA	
24.					L={-2,-1,0,1,2}, and c	
	is randomly chose	n from M={-4,-2,0,2	2,4}, what is the p	robability that (x,y	r)=(2,-1) is a solution	
	to ax+by=c?					
	(A) $\frac{11}{125}$	(B) $\frac{12}{125}$	(C) $\frac{13}{125}$	$(D)\frac{3}{25}$	(E) NOTA	
25.	Two numbers are	selected from the s	et {1,2,3,4,5,6,7,8	3,9} without replac	ement. What is the	
	probability the product of the numbers selected is a multiple of 4?					
	$(A)\frac{1}{4}$	(B) $\frac{5}{12}$	(C) $\frac{4}{9}$	(D) $\frac{17}{36}$	(E) NOTA	
26.	Given a 3-digit who		s the probability th	e hundreds digit i	s even, the tens digit is	
	(A) $\frac{14}{81}$	(B) $\frac{4}{25}$	(C) $\frac{1}{5}$	(D) $\frac{8}{45}$	(E) NOTA	

22. You flip a coin until you have 4 heads or 4 tails. What is the probability the game is over after

exactly 5 flips?

THETA DIVISION—PROBABILITY TOPIC TEST ANSWER KEY

- 1. D
- 2. A
- 3. D
- 4. B
- 5. C
- 6. B
- 7. C
- 8. C
- 9. A
- 10. A
- 11. D
- 12. C
- 13. D
- 14. B
- 15. C
- 16. B
- 17. B
- 18. B
- 19. A
- 20. A
- 21. D
- 22. B
- 23. C
- 24. C
- 25. C
- 26. D