Solutions

- 1. **Answer (C):** $\log_b 2012 = 2 \log 4 + b$. Since $\log 2 = 1 c$, the answer is a 2c + 2.
- 2. **Answer (B):** The units digits of powers of 3^n repeat with period 4. 2012 is dismissible by 4, and hence, the units digit of 3^{2012} is simply 1. Making a similar argument, the units digit of 4^{2012} is 6. The sum of these two numbers is 7.
- 3. **Answer (A):** Each of those expressions is equal to one another (easily seen if you apply the change of base formula on the first two terms). Since there are n terms, the expression becomes $n \log_2 x = 8$ which implies that $2^8 = x^n$. There are 4 integers x which satisfy this. Namely, they are 2, 4, 16 and 256; the sum of which is 278.
- 4. **Answer (B):** The infinite square root implies that $y = x\sqrt{y}$, or that $y = x^2$ (we reject the case y = 0 of course). Hence we are looking for the sum of the first 2012 squares, divided by 2012, which is given by:

$$\frac{1}{2012} \cdot \frac{2012 \cdot 2013 \cdot 4025}{6} = \frac{2700775}{2}$$

- 5. **Answer (D):** $\log 5 = 1 \log 2 \approx 1 .301 = .699$.
- 6. **Answer (B):** We make the substitution: $s = \log_s 27$. Converting to exponential form we find that $s^s = 27$ which implies s = 3.
- 7. **Answer (A):** There are no repeated letters.
- 8. **Answer (D):** We are looking for points such that $e^x = x$. Clearly, for $x \le 0$ no such point exists, because for all $x \in \mathbb{R}$, $e^x > 0$ but when x < 0, the expression is negative. If you graph the two, or make the argument that e^x (an exponential function) grows faster than the linear one x, we see that no points of intersection exist. Hence, the answer is 0.
- 9. **Answer (C):** The equation $x^{17} x + 1 = 0$ implies: $x^{16} = 1 1/x$ (note that because x = 0 isn't a root, we can do this). Then, we have:

$$r_1^{16} = 1 - 1/r_1$$
...
 $r_{17}^{16} = 1 - 1/r_{17}$

Hence,
$$r_1^{16} + r_2^{16} + \dots + r_{17}^{16} = (\underbrace{1 + 1 + \dots + 1}_{17 \ times}) - (-\frac{-1}{1})$$

(which is the sum of the reciprocals of the roots). Simplifying, 16 is the answer, as desired.

- 10. **Answer (B):** Using change of base on each term, the answer is given by: $\log_{256} 2$ which is equivalent to $\frac{1}{8}$.
- 11. **Answer (B):** We have $\sqrt{100000} = 100$, and that $\sqrt{100} = 10$. Then, $3 < \sqrt{10} < 4$, which means $\sqrt{3} < \sqrt{\sqrt{10}} < 2$. Hence, the answer is 1.
- 12. **Answer (E):** The number of digits is given simply by: $\lfloor 2012 \log(125) + 1 \rfloor$.
- 13. **Answer (A):** Changing to exponential form three times in a row yields $3^{49} = x^{49}$ which implies that x = 3.
- 14. **Answer:** (D)
- 15. **Answer (C):** Using the log addition properties, the expression is equal to $\log(7^3)$, which is closest to 2.5 (note, se can use the same $\sqrt{10}$ approximations as before)
- 16. **Answer** (**D**): For $\log\left(\frac{b}{c}\right)$ to have a characteristic greater than three, $\frac{b}{c}$ must be greater than 1000. This means that $\log_{11} a$ must be between 1000 and 10,000. Answer choice (**D**) is the only one large enough.
- 17. **Answer (C):** Because $\ln e^2 = 2$, the answer is 2^3 , or 8.
- 18. **Answer (C):** We wish to calculate:

$$\begin{array}{rcl} \log_8 \left(\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[4]{2} \cdots \right) & = & \log_8 \left(2^{\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots} \right) \\ & = & \log_8 \left(2^{\frac{1/2}{1 - 1/2}} \right) \\ & = & \log_8 2^1 \\ & = & \frac{1}{3}, \end{array}$$

as desired.

- 19. **Answer (D):** Only the third answer choice is correct (the others aren't true if their components are negative). Hence, 1.
- 20. **Answer (E):** The expressions $3^{\log x}$ and $x^{\log 3}$ are equivalent. Thus, let $y = 3^{\log x}$. We have that $y^2 2y 8 = 0$ which implies that y = 4 (because we must reject the negative solution). Then, $3^{\log x} = 4$, or $x = 10^{\log_3 4}$. The sum 10 + 3 + 4 = 17 is what we desired, and we are done.
- 21. **Answer:** (C)
- 22. **Answer (E):** One has that $A^2 + B^2 = A^2B^2$, which implies that:

$$B = \sqrt{\frac{A^2}{A^2 - 1}} = \frac{|A|}{\sqrt{A^2 - 1}},$$

as desired.

- 23. **Answer (A):** The approximations $e \approx 2.71$ and $\pi \approx 3.14$ are sufficient enough to produce the correct answer of 23.
- 24. **Answer (E):** Taking the log of both sides, we have $3x^2 \log 7 + x \log 5 \log 11 = 0$. The sum of x values which satisfy this equation, is thus

$$-b/a = \frac{-\log 5}{3\log 7}.$$

25. **Answer (B):** The third side must be less than $\log_2 5 + \log_2 3 = \log_2 15$, whose floor has a value of 3.

- 26. **Answer (E):** If x is negative, the entire expression is positive and hence there are an infinite number of values.
- 27. **Answer (C):** Raise each number to the $6 \cdot 10 \cdot 2 \cdot 7$ hower. We easily see that $\sqrt[40]{4}$ is the largest of the numbers.
- 28. **Answer (C):** This is simply $\log \left(\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdots \frac{2011}{2012} \right) = \log \left(\frac{1}{2012} \right)$ for a sum of 2013.
- 29. **Answer (D):** We want $\log_{2011}(\log_{2010}(\log_{2009})) > 0$ which means $\log_{2010}(\log_{2009} x) > 1$ which implies that $x > 2009^{2010}$
- 30. **Answer:** (C)