1. Which of the following is condensed form of the following logarithmic expression?

$$\frac{1}{4}\log x^2 - 2\log y + \log 4$$

- $a. \quad \log \frac{4x}{y}$
- $\mathbf{c.} \quad \log \frac{4\sqrt{x}}{y^2}$

e. None of the

Above

b. $\log \frac{4x^2}{y^2}$

d. $\log(\sqrt{x} - y^2 + 4)$

- **2.** Solve for x: $\frac{e^x}{e^x 1} = 5$
 - **a.** $\ln \frac{5}{4}$ **b.** $\ln \frac{4}{5}$

c. $\ln \frac{1}{4}$

e. None of the Above

- **d.** $\ln \frac{-1}{4}$
- 3. The temperature T of a loaf of bread t minutes after being removed from the oven can be modeled by the equation $T=T_R+5e^{\ln\left(\frac{3}{8}t\right)}$, where T_R is the room

temperature. Determine how many minutes it will take a loaf of bread to cool down to 90°F at a room temperature of 75°F.

a. 5 min **b.** 8 min

c. 10 min **d.** 16 min

- e. None of
 - the Above
- 4. A sum of money is invested in the Mullionaire's Club Bank at 10% compounded continuously. Determine after how many years there will be a 150% increase in the original investment.
 - **a.** $(0.1) \ln 1.5$ years
- c. ln15 years

e. None of the

- **b.** 10ln1.5 years
- **d.** 1.5 years

- Above
- 5. If x and y are both distinct positive integers, solve for the smallest possible value for

$$x + y given: 9^x = (x^y)(9^y)$$

a. 0

c. 5

e. None of

b. 3

d. 7

the Above **6.** Which of the following is expanded form of the following logarithmic expression?

$$\log_b \sqrt[3]{4x^5y^7}$$

- **a.** $\frac{1}{3}[\log_b 4 + 5\log_b x + 7\log_b y]$
- **b.** $-\frac{1}{3}[\log_b 4 + 5\log_b x + 7\log_b y]$
- **c.** $3[4\log_b + 5\log_b x + 7\log_b y]$
- **d.** $\frac{1}{3}[4\log_b + 5\log_b x + 7\log_b y]$
- e. None of the Above
- 7. Determine the characteristic and mantissa: $\log = 2.6385$.

$$characteristic = 6385$$

- mantissa = 2
- . characteristic = –8
- mantissa = -0.6385
- characteristic = 2
- mantissa = 0.6385
- characteristic = 8
 - mantissa = 0.6385
- e. None of the Above
- 8. Which of the following exponential equations represents an exponential decay?

a.
$$y = 2e^{0.21t}$$

b.
$$y = 2e^{-0.21t}$$

c.
$$y = 5(2)^t$$

d.
$$y = 4 - 4(2)^{-t}$$

- e. None of the Above
- **9.** Find the vertical asymptote of the logarithmic equation: $f(x) = -\log_3(x+2) 4$.

a.
$$x = -2$$

c.
$$x = -4$$

b.
$$x = 2$$

d.
$$x = 0$$

the Above

10. Simplify: $\frac{(\log 243)(\log 625)(\log 216)}{(\log 36)(\log 729)(\log 25)}$

a.
$$\frac{2}{5}$$

b.
$$\frac{5}{2}$$

11. Simplify: $3^{-x}(9^{2x^2}(27^{-7x}(243^{-\frac{2}{5}})))$

- **a.** 3^{-2008x}

d. $3^{4x^2-22x-2}$

e. None of the Above

c. 5

12. Which of the numbers listed below is the largest?

- **a.** 2^{2008}
- **b.** 3^{1004}

- **d.** $\frac{1}{9}^{-251}$

e. None of the Above

13. If $64^{-x} = 1024$, then find x.

- **b.** $\frac{-2}{3}$

- c. $\frac{3}{5}$ d. $\frac{-5}{6}$

e. None of the Above

14. Find the product of the solutions of the equation: $8^{4x^2+43x-62} = 64$

- c. -16
- **d.** $\frac{43}{4}$

e. None of the Above

15. Find the coefficient of the x^3y^5 term of $(2x - y)^8$.

a. -8**b.** 8

- **c.** 2688
- **d.** 448

e. None of the Above

16. $(-\frac{i}{2})^{2008} =$

- c. $2i^{2008}$

e. None of the Above

17. Solve the equation for x: $6^x(6^{2x}) = 54$

a.
$$\frac{3\log 54}{\log 6}$$
b. $\frac{\log 54}{3\log 6}$

c.
$$\frac{1}{3}\log_{54} 6$$

e. None of the Above

b.
$$\frac{\log 54}{3\log 6}$$

$$d. -3 \frac{\log 54}{\log 6}$$

18. Find the sum of the roots of: $x^{\frac{4}{3}} - 91x^{\frac{2}{3}} + 1728 = 0$

a.
$$3\sqrt{3} + 512$$

b.
$$81\sqrt{3} + 512$$

19. Find the domain of: $y = \log(16x^3 - 8x^2 + 30x - 15)$

a.
$$\left(\frac{-15}{8}, \frac{1}{2}\right)$$

b.
$$\left[\frac{-15}{8}, \frac{1}{2}\right] \bigcup \left[\frac{15}{8}, \infty\right)$$

c.
$$\left(\frac{-15}{8}, \infty\right)$$

d.
$$\left(\frac{1}{2},\infty\right)$$

e. None of the Above

20.
$$\left[\frac{(x^2 - y^2)^{-3}}{-(x+y)^{-4}}\right]^{\frac{-2}{3}} =$$

a.
$$\frac{(y-x)^2}{(x+y)^{\frac{2}{3}}}$$

b.
$$\frac{-(x-y)^3}{(x+y)^2}$$

c.
$$\frac{(x-y)^2}{(x+y)^{\frac{2}{3}}}$$

d. $\frac{-(x-y)^2}{(y-x)^{\frac{2}{3}}}$

d.
$$\frac{-(x-y)^2}{(y-x)^{\frac{2}{3}}}$$

e. None of the Above **21.** Eric Exponent has a dream of being an architect. His first assignment at Sacramento University involves using a special type of logarithmic graph paper. The vertical lines of the paper have a scale of $\frac{1}{\log a}$ where a is a positive integer

from 1 to 1,000 inclusive. The horizontal lines have a scale of a^{-1} where a is a positive integer from 1 to 1,000 inclusive. Find the sum of the x and y coordinates of the points on the logarithmic graph paper when a = 10, a = 100, and a = 1000.

a. 1 b. $\frac{29}{15}$

c. $\frac{1766}{3000}$ d. $\frac{5833}{3000}$

- e. None of the Above
- **22.** Solve for A+B+C+D+E when A,B,C,D,E are digits from 0-9 and not necessarily

distinct:
$$AB^{C} = DED$$

 $A + B = 4$

a. 9b. 14

- c. 16
- d. 17

- e. None of the Above
- 23. A young mathematician walked in the Magical Mu rainforest in the far-away country of AlphaLand. She passed many amazing creatures in the forest like the Parallel Lions, the Intigers, and the Polar Bears. Let L = the number of lions in the forest, T = the number of tigers in the forest, and B = the number of bears in the forest. The populations are represented by the following models:

 $L=4^x, T=5^{2(x-1)}, B=10^{x+2}$ where x = time in months. How many animal legs are in the forest after $\frac{1}{4}$ year?

a. 100,576b. 402,756

- c. 402,800
- d. 462,756

e. None of the Above

- **24.** If $a^{2b} = 5$, find the value of $3a^{6b} + 8$
 - a. 383

c. 88

b. 133

d. 53

e. None of the Above

2008 National MAO Convention

Theta Logs and Exponents

- **25.** Solve for *x*: $\log_4(\log_3(\log_2 x)) = 0$
 - a. $\frac{3}{2}$
 - b. log(0.75)

- d. 6
- e. None of

the Above

- c. 4 **26.** $6^6 + 6^6 + 6^6 + 6^6 + 6^6 + 6^6 =$
 - a. 6⁶
 - b. 6⁷

- c. 36^6
- d. 6^{36}

e. None of

the Above

- 27. Simplify. i^{45} i^{28} + i^{16} i^{7} write answer in a+bi form. Find a + b.
 - a. 0
 - b. 1

- c. 2
- d. 3

e. None of the

Above

 $|e \approx 2.72$

- 28. What will an account's value grow to be if the interest rate is 2% compounded continuously if the original investment is \$120 and the account will remain untouched for 100 years? (round to the nearest dollar)
 - a. \$653
 - b. \$888

- c. \$889
- d. \$2415

e. None of the

Above

- **29.** What is the domain of $f(x) = \log_8 |x^2 25|$?
 - a. All real numbers
 - b. $(5, \infty)$

d. $(-\infty, 5) \cup (5, \infty)$

c. (8, ∞)

- e. None of the Above
- **30.** If $(2\log_a b)(\log_5 a) = 6$, and a > 0, then b =?
 - a. 125
 - b. 5

- c. 243
- d. $\frac{243}{a}$

e. None of the Above 2008 National MAO Convention

Theta Logs and Exponents