

Matrices & Determinants Theta, Round 2 Test #433

- 1. Write your 6-digit ID# in the I.D. NUMBER grid, left-justified, and bubble. Check that each column has only one number darkened.
- 2. In the EXAM NO. grid, write the 3-digit Test # on this test cover and bubble.
- 3. In the Name blank, print your name; in the Subject blank, print the name of the test; in the Date blank, print your school name (no abbreviations).
- 4. Scoring for this test is 5 times the number correct + the number omitted.
- 5. You may not sit adjacent to anyone from your school.
- 6. TURN OFF ALL CELL PHONES OR OTHER PORTABLE ELECTRONIC DEVICES NOW.
- 7. No calculators may be used on this test.
- 8. Any inappropriate behavior or any form of cheating will lead to a ban of the student and/or school from future national conventions, disqualification of the student and/or school from this convention, at the discretion of the Mu Alpha Theta Governing Council.
- 9. If a student believes a test item is defective, select "E) NOTA" and file a Dispute Form explaining why.
- 10. If a problem has multiple correct answers, any of those answers will be counted as correct. Do not select "E) NOTA" in that instance.
- 11. Unless a question asks for an approximation or a rounded answer, give the exact answer.

Note: For all questions, answer "(E) NOTA" means none of the above answers is correct.

- 1. Find the sum of *a* and *b*, given the following: $\begin{bmatrix} b & -a \\ -3 & 0 \end{bmatrix} + 2 \begin{bmatrix} 2b & a+9 \\ a & -1 \end{bmatrix} = \begin{bmatrix} 25 & 16 \\ -7 & -2 \end{bmatrix}$
 - (A) 18
- (B) 3
- (C) 5
- (D) 8
- (E) NOTA
- 2. Find the determinant of the following matrix: $\begin{bmatrix} 3 & 4 & 11 \\ 15 & -6 & -10 \\ -12 & 2 & 7 \end{bmatrix}$
 - (A) -588
- (B) 468
- (C) 468
- (D) 588
- (E) NOTA
- 3. Let $A = \begin{bmatrix} 7 & 2 \\ -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix}$. Evaluate: $(A+B)^2 + 6B^{-1}$

 - (E) NOTA

- (A) $\begin{bmatrix} 87 & 77 \\ -2 & 51 \end{bmatrix}$ (B) $\begin{bmatrix} 82 & 159/2 \\ -1/3 & 148/3 \end{bmatrix}$ (C) $\begin{bmatrix} 81 & 80 \\ 0 & 49 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & -1/2 \\ -1/3 & 1/3 \end{bmatrix}$
- 4. Let $C = \begin{bmatrix} 6 & 1 \\ 1 & 0 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -7 \\ 0 & -8 & 9 \end{bmatrix}$. After computing the product, what is the sum of the entries of C
 - (A) 29
- (B) 49
- (C) 0
- (D) 154
- (E) NOTA

- 5. Find the adjoint matrix of $\begin{bmatrix} 1 & 0 & 1 \\ 3 & 4 & -2 \\ 5 & 2 & 1 \end{bmatrix}$.

 - (A) $\begin{bmatrix} 0 & 7 & -14 \\ -2 & -6 & 2 \\ -4 & -5 & 4 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & -2 & -4 \\ 7 & -6 & -5 \\ -14 & 2 & 4 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & -7 & -14 \\ 2 & -6 & -2 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 2 & -4 \\ -7 & -6 & 5 \end{bmatrix}$
 - (E) NOTA

- 6. What is the product of C_{32} and M_{14} , where C_{ij} denotes the *i*th row *j*th column cofactor and M_{ij} denotes the *i*th row *j*th column minor of matrix A = $\begin{bmatrix} 1 & -1 & 3 & 4 \\ 0 & 4 & -1 & 0 \\ -1 & 2 & 1 & 5 \end{bmatrix}$?
 - (A) -2948
- (B) -60
- (C) 60
- (D) 2948
- (E) NOTA
- 7. Suppose that matrix A, shown below, has two eigenvalues of 1 and 10. What is the sum of the squares of the other eigenvalues of A?

$$A = \begin{bmatrix} 5 & 4 & 1 & 1 \\ 4 & 5 & 1 & 1 \\ 1 & 1 & 4 & 2 \\ 1 & 1 & 2 & 4 \end{bmatrix}$$

- (A) 13
- (B) 17
- (C) 20
- (D) 29
- (E) NOTA

- 8. Which of the following is an eigenvector of $\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix}$?
- (A) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (B) $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ (C) $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ (D) $\begin{bmatrix} 3 \\ 0 \end{bmatrix}$
- (E) NOTA
- 9. Let $A = \begin{bmatrix} 11 & 2 & 8 \\ 0 & 13 & 4 \\ 0 & 0 & 7 \end{bmatrix}$. What is the value of det(2A) 7007det(A⁻¹)?
 - (A) 999
- (B) 1001
- (C) 3993
- (D) 8001
- (E) NOTA
- 10. Given that the matrix $\begin{bmatrix} 5 & -2 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & x \end{bmatrix}$ is singular, what is x?
 - (A) 1
- (B) 2
- (C)3
- (D) 4
- (E) NOTA
- 11. Which of the following matrices is an orthogonal matrix?

 - $\text{(A)} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{(B)} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \\ \text{(C)} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \text{(D)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad \text{(E) NOTA}$

- 12. What is the rank of $\begin{bmatrix} 2 & 3 & -1 & 5 \\ 1 & 0 & 1 & 0 \\ 4 & 6 & 2 & 10 \end{bmatrix}$?
 - (A) 0
- (B) 1 (C) 2
- (D) 3
- (E) NOTA

13. Suppose A is a 3 x 7 matrix. What is the sum of all possible values of the rank of A?

(A) 6

(B) 10

(C) 15

(D) 28

(E) NOTA

14. Find the area of a triangle whose vertices have coordinates (3, -8), (6, 8), and (-1, -6).

(A) 30

(B) 60

(C)86

(D) 172

(E) NOTA

15. The first column of a 20 x 20 matrix contains the integer 9 in each of the rows. The second column is one-third of the first column. The third column is one-third of the second column, and so on. If this pattern continues, what is the trace of this matrix?

(A) $\frac{1}{2}(27 - 3^{-17})$ (B) 3^{-17} (C) $6(1 - 3^{-20})$ (D) $\frac{27}{2}$ (E) NOTA

16. What is A^{-1} if $A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & 2 & 1 \\ 3 & 5 & 3 \end{bmatrix}$?

$$(A) \begin{bmatrix} 1 & -2 & 0 \\ 3 & -3 & -1 \\ -6 & 7 & 2 \end{bmatrix} (B) \begin{bmatrix} -1 & 2 & 0 \\ -3 & 3 & 1 \\ 6 & -7 & -2 \end{bmatrix} (C) \begin{bmatrix} -1 & -2 & 0 \\ -3 & 0 & 1 \\ 3 & -7 & 2 \end{bmatrix} (D) \begin{bmatrix} 1 & -2 & 0 \\ 3 & -3 & 1 \\ 6 & 7 & 2 \end{bmatrix}$$

(E) NOTA

17. Evaluate: $\begin{vmatrix} -\ln e^4 & e^{\ln 3!} \\ e^{\ln 1} & \ln e^4 - \ln e^8 \end{vmatrix}$

(A) -22

(B) 10

(C) 13

(D) 16

(E) NOTA

18. Given the following system of equations:

$$\begin{cases} 371w + 157x + 261y - 385z = 157 \\ -100w + 380x - 467y + 75z = 380 \\ -54w + 383x + 72y - 440z = 383 \\ -34w + 262x + 161y + 272z = 262 \end{cases}$$

What is $(wy + xz)^5$?

(A) -1

(B) 0

(C) 1

(D) 32

(E) NOTA

19. Which of the following determinants, when set equal to 0, represents the equation of a circle passing through the points (1, -4), (3, -6), and (3, -2)?

(A)
$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ 17 & 1 & -4 & 1 \\ 45 & 3 & -6 & 1 \\ 13 & 3 & -2 & 1 \end{vmatrix}$$
(C)
$$\begin{vmatrix} x + y & x & y & 1 \\ -3 & 1 & -4 & 1 \\ -3 & 3 & -6 & 1 \end{vmatrix}$$

(A)
$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ 17 & 1 & -4 & 1 \\ 45 & 3 & -6 & 1 \\ 13 & 3 & -2 & 1 \end{vmatrix}$$
(B)
$$\begin{vmatrix} 1 & x & y & x^2 + y^2 \\ 1 & 1 & -4 & 17 \\ 1 & 3 & -6 & 45 \\ 1 & 3 & -2 & 13 \end{vmatrix}$$
(C)
$$\begin{vmatrix} x + y & x & y & 1 \\ -3 & 1 & -4 & 1 \\ -3 & 3 & -6 & 1 \\ 1 & 3 & -2 & 1 \end{vmatrix}$$
(D)
$$\begin{vmatrix} x^2 + y^2 & x & y & 0 \\ 17 & 1 & -4 & 0 \\ 45 & 3 & -6 & 0 \\ 13 & 3 & -2 & 0 \end{vmatrix}$$

20. Let $X_0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $A = \begin{bmatrix} 0.5 & 0.25 \\ 0.5 & 0.75 \end{bmatrix}$. For $n \ge 0$, let $X_{n+1} = AX_n$. Which of the following is closest to the magnitude of the vector $X_{5,000,000,000,000}$?

- (A) $\sqrt{2}$
- (B) $\sqrt{5}$
- (C) 5
- (D) 3
- (E) NOTA

21. Which of the following matrices is singular?

(A)
$$\begin{bmatrix} 6483 & 4444 & 3400 & 5220 \\ 8880 & 1523 & 6722 & 4218 \\ 8988 & 3528 & 5169 & 6120 \\ 9338 & 4334 & 1786 & 7449 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 5935 & 1868 & 3384 & 3902 \\ 6604 & 9901 & 6474 & 1486 \\ 9678 & 8790 & 7527 & 2552 \\ 8218 & 4484 & 3120 & 9693 \end{bmatrix}$$

$$(C) \begin{bmatrix} 4197 & 4086 & 9940 & 4482 \\ 2462 & 9059 & 4352 & 7770 \\ 1048 & 8648 & 5021 & 3574 \\ 4374 & 9152 & 3668 & 9481 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 5805 & 1310 & 2788 & 72527 \\ 3196 & 4449 & 2484 & 9178 \\ 6630 & 5148 & 9717 & 1810 \\ 9416 & 3496 & 2524 & 4733 \end{bmatrix}$$

(E) NOTA

22. Find the sum of the elements of $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^{2013}$.

- (A) 8^{2013}
- (B) 8^{4026}
- (C) 2^{4025}
- (D) 2^{4027}
- (E) NOTA

23. Determine the number of 4×4 matrices, all of whose entries consist of a 0 or 1, that have an odd number of 1s in each row and each column.

- (A) 64
- (B) 128
- (C) 512
- (D) 32768
- (E) NOTA

24. Let A be an $n \times n$ matrix where A^3 is equal to the $n \times n$ zero matrix. Let I equal the $n \times n$ identity matrix. How many of the following matrices are singular?					
	• A • $I - A$ • $I + A$ • $I + A + \frac{1}{2}$	A^2			
(A)	0	(B) 1	(C) 2	(D) 3	(E) NOTA
25. What is the determinant of $A^2 + B^2$, if A and B are both $n \times n$ matrices such that $A \neq B$, $A^3 = B^3$, and $A^2B = B^2A$?					
	(A)-1	(B) 0	(C) 1	(D) 8	(E) NOTA
26.	6. If A is a 50×50 matrix, B is a 20×50 matrix, and C is a 30×20 matrix, which of the following matrix products is well-defined?				
	(A) ABC	(B) AB^TC	(C) AB^TC^T	(D) CA^2B	(E) NOTA
27.	7. A matrix B is called a <i>perfect square</i> if there is a matrix A such that $A^2 = B$. Which of t following matrices is a perfect square?				
	$(A)\begin{bmatrix} 3 & 16 \\ 14 & 2 \end{bmatrix}$	$(B)\begin{bmatrix} 4 & 16\\ 16 & 4 \end{bmatrix}$	$(C)\begin{bmatrix} 2 & 64 \\ 16 & 4 \end{bmatrix}$	$(D)\begin{bmatrix} 11 & 7 \\ 14 & 18 \end{bmatrix}$	(E) NOTA
28.	28. Let $n = det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $m = det \begin{pmatrix} 3c & 3d \\ 4a - c & 4b - d \end{pmatrix}$. Given that $n \neq 0$, if the value is written as a common fraction in lowest terms, what is the sum of the numerator denominator?				
	(A) 10	(B) 11	(C) 12	(D) 13	(E) NOTA
29. Suppose that $e^{\begin{vmatrix} 2 & 3 \\ -6 & -2 \end{vmatrix}} = \ln(\begin{vmatrix} e^e & 0 \\ \frac{1}{e} & a \end{vmatrix})$. What is the value of $\frac{1}{\ln(a)}$?					
	(A) e^{-13}	(B) e^{13}	(C) e	(D) 13	(E) NOTA

30. When the positive integers 1 to 9, inclusive, are used exactly once as elements of a 3×3 matrix, what is the largest possible value of the determinant of the matrix?

(A) 623 (B) 412 (C) 210 (D) 170 (E) NOTA