Mu Alpha Theta National Convention: San Diego 2013 Theta Matrices and Determinants Topic Test – Solutions

- 1. B
- 2. B
- 3. A
- 4. C
- 5. D
- 6. E
- 7. D
- 8. C
- 9. D
- 10. D
- 11. C
- 12. D
- 13. A
- 14. E
- 15. A
- 16. A
- 17. B
- 18. B
- 19. A
- 20. B
- 21. E
- 22. D
- 23. C

- 24. B
- 25. B
- 26. C
- 27. D
- 28. D
- 29. E
- 30. B
 - 1. (B). Perform operations on each individual entry $b + 2(2b) = 25 \Rightarrow b = 5$

$$0 + 2(20) = 23 \Rightarrow 0 = 3$$

 $-3 + 2a = -7 \Rightarrow a = -2$
 $a + b = 3$.

2. **(B)**. Expanding by minors yields

$$\begin{vmatrix} 3 & 4 & 11 \\ 15 & -6 & -10 \\ -12 & 2 & 7 \end{vmatrix} = 3 \begin{vmatrix} -6 & -10 \\ 2 & 7 \end{vmatrix} - 4 \begin{vmatrix} 15 & -10 \\ -12 & 7 \end{vmatrix} + 11 \begin{vmatrix} 15 & -6 \\ -12 & 2 \end{vmatrix}$$
$$= 3(-42 - (-20)) - 4(65 + 120) + 11(30 - 72)$$
$$= -468.$$

3. **(A)**. We have

$$(A+B)^{2} + B^{-1} = A^{2} + AB + BA + B^{2} + 6B^{-1}$$

$$= \begin{bmatrix} 7 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 7 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 7 & 2 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix}$$

$$+ 6 \begin{bmatrix} 2 & 3 \\ 2 & 6 \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} 45 & 16 \\ -16 & -3 \end{bmatrix} + \begin{bmatrix} 18 & 33 \\ -2 & 0 \end{bmatrix} + \begin{bmatrix} 8 & 7 \\ 2 & 10 \end{bmatrix} + \begin{bmatrix} 10 & 24 \\ 16 & 42 \end{bmatrix} + 6(1/6) \begin{bmatrix} 6 & -3 \\ -2 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 87 & 77 \\ -2 & 51 \end{bmatrix}.$$

4. (C). Simply multiplying yields

(C). Simply multiplying yields
$$\begin{bmatrix} (6)(4) + (1)(0) & (6)(3) + (1)(-8) & (6)(-7) + (1)(9) \\ (1)(4) + (0)(0) & (1)(3) + (0)(-8) & (1)(-7) + (0)(9) \\ (4)(4) + (-1)(0) & (4)(3) + (-1)(-8) & (4)(-7) + (-1)(9) \end{bmatrix} = \begin{bmatrix} 24 & 10 & -33 \\ 4 & 3 & -7 \\ 16 & 20 & -37 \end{bmatrix}$$
The sum of the entries is 0.

5. (D). The adjoint of a matrix is the transpose of the matrix where each entry is replaced by its cofactor. The cofactor $C_{ij} = (-1)^{i+j} M_{ij}$, where M_{ij} is the minor expansion along the i^{th} row and j^{th} column.

The matrix of cofactors is
$$\begin{bmatrix} (-1)^{(1+1)}((4)(-1) - (2)(-2)) & (-1)^{1+2}((3)(-1) - (5)(-2)) & (-1)^{1+3}((3)(2) - (5)(4)) \\ (-1)^{2+1}((0)(-1) - (2)(1)) & (-1)^{2+2}((1)(-1) - (5)(1)) & (-1)^{2+3}((1)(2) - (0)(5)) \\ (-1)^{3+1}((0)(-2) - (4)(1)) & (-1)^{3+2}((1)(-2) - (3)(1)) & (-1)^{3+3}((1)(4) - (3)(0)) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -7 & -14 \\ 2 & -6 & -2 \\ -4 & 5 & 4 \end{bmatrix}$$

The transpose of the cofactor matrix is

$$\begin{bmatrix} 0 & 2 & -4 \\ -7 & -6 & 5 \\ -14 & -2 & 4 \end{bmatrix}.$$

- 6. **(E)**. The cofactor $C_{ij} = (-1)^{i+j} M_{ij}$. So $C_{32} = (-1)^{3+2} M_{32} = (-1)(-5) = 5$ and $M_{14} = 22$. Hence, $C_{32} M_{14} = 110$.
- 7. **(D)**. The sum of eigenvalues is equal to the trace of the matrix. Tr(A) = 18. The product of eigenvalues is equal to the determinant of the matrix. Det(A) = 100. So let a and b equal the other two eigenvalues. 1 + 10 + a + b = 18 and $1 \cdot 10 \cdot a \cdot b = 100$. So a + b = 7 and ab = 10. By inspection, the other two eigenvalues are 5 and 2. Hence, $5^2 + 2^2 = 29$.
- 8. **(C)**. We can simply figure out which vector is an eigenvector by multiplying each vector by the matrix. If the product is a scalar multiple of the vector, then it is an eigenvector of the matrix. Try $\begin{bmatrix} 2 \\ -2 \end{bmatrix}$:

$$\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}.$$
 It is a scalar multiple of
$$\begin{bmatrix} 2 \\ -2 \end{bmatrix}.$$

- 9. **(D)**. Det(A) = 1001. $Det(2A) = 2^3 \cdot 1001$ and $Det(A^{-1}) = \frac{1}{1001}$. So $Det(2A) 7007 \cdot \frac{1}{1001} = 8001$.
- 10. (D). A singular matrix has a determinant of zero.

$$\begin{vmatrix} 5 & -2 & 1 \\ 1 & 0 & 3 \\ -1 & 1 & x \end{vmatrix} = -15 + 2x + 6 + 1. \text{ So } -8 + 2x = 0 \Rightarrow x = 4.$$

- 11. **(C)**. By definition, an orthogonal matrix is one where the inverse is equal to its transpose. So $\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ is an orthogonal matrix, while the others are not.
- 12. **(D)**. To find the rank of a matrix, first convert the matrix to reduced row echelon form by row operations. Then count the number of non-zero rows and that is the rank. The $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$

matrix in question reduces to
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5/3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 so it has a rank of 3.

- 13. (A). A 3 x 7 matrix can have rank values of 0, 1, 2, or 3, so the sum of possible rank values is 6.
- 14. **(E)**. By the standard formula, we can find the area of the triangle as follows:

$$A = \frac{1}{2} \begin{vmatrix} 3 & -8 & 1 \\ 6 & 8 & 1 \\ -1 & -6 & 1 \end{vmatrix} = 35.$$

- 15. (A). The trace is the sum of entries along the diagonal. So the trace of the matrix is $9 + 3 + 1 + \frac{1}{3} + \dots + 9 \cdot \frac{1}{3}^{19} = \frac{9(1 - \frac{1}{3}^{20})}{2/3} = \frac{27}{2}(1 - \frac{1}{3}^{20}) = \frac{1}{2}(27 - 3^{-20} \cdot 3^3) = \frac{1}{2}(27 - 3^{-17}).$
- 16. (A). To find an inverse of a matrix, augment it with the identity matrix on the right and row reduce until the identity matrix is on the left side.

After using various row operations on the augmented matrix,
$$\begin{bmatrix} 1 & 4 & 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 3 & 5 & 3 & 0 & 0 & 1 \end{bmatrix}$$
 becomes
$$\begin{bmatrix} 1 & 0 & 0 & 1 & -2 & 0 \\ 0 & 1 & 0 & 3 & -3 & -1 \\ 0 & 0 & 1 & -6 & 7 & 2 \end{bmatrix}$$
. Hence, the inverse matrix is
$$\begin{bmatrix} 1 & -2 & 0 \\ 3 & -3 & -1 \\ -6 & 7 & 2 \end{bmatrix}$$
.

- 17. (B). To find the determinant of this matrix, first simplify each element. By simple log rules, the simplified matrix is $\begin{bmatrix} -4 & 6 \\ 1 & -4 \end{bmatrix}$. The determinant is 16 - 6 = 10.
- 18. **(B)**. By inspection, w = 0, x = 1, y = 0, and z = 0 so $(wy + xz)^5 = 0^5 = 0$.
- 19. (A). By the standard formula, the determinant that represents the equation of a circle (A). By the standard formula, the determinant sheet $x^2 + y^2 + x + y = 1$ containing the points $(1, -4), (3, -6), \text{ and } (3, -2) \text{ is } \begin{vmatrix} x^2 + y^2 & x & y & 1 \\ 17 & 1 & -4 & 1 \\ 45 & 3 & -6 & 1 \\ 13 & 3 & -2 & 1 \end{vmatrix}$. Setting the determinant equal to 0 yields $8x^2 - 48x + 8y^2 + 64y + 168 = 0$. The equation can be rewritten as $(x-3)^2 + (y+4)^2 = 4$, which is a circle.
- 20. (B). A is a Markov matrix so it is helpful to find the eigenvectors of the matrix We can find eigenvalues by setting the following matrix equal to 0. $\begin{vmatrix} 0.5 - \lambda & 0.25 \\ 0.5 & 0.75 - \lambda \end{vmatrix} =$ $(0.5 - \lambda)(0.75 - \lambda) - \frac{1}{4} \cdot \frac{1}{2} = 0$. After solving for λ , we get $\lambda = 1$ and $\lambda = 0.25$ The corresponding eigenvectors are $V_1 = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$ and $V_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Express X_0 in terms of the two eigenvectors, which is $2V_1 - 1V_2$. So $X_1 = A(2V_1 - V_2) = 2AV_1 - AV_2 = 2V_1 - \frac{1}{4}V_2$. As X_2, X_3 , and so on are calculated the second term approaches zero and we are left with $2AV_1$ so $X_{5,000,000,000}$ is equal to $\begin{bmatrix} 1\\2 \end{bmatrix}$. The magnitude of the vector is $\sqrt{1^2+2^2}=\sqrt{5}$.

- 21. **(E)**. Look at the elements of each matrix modulo 2. Since every matrix has odd elements along the main diagonal and even elements elsewhere, the matrix in modulo 2 is equivalent to the 4×4 identity matrix, resulting in a determinant of 1. Hence, none of the matrices are singular, because zero is an even number.
- 22. **(D)**. Let us first look at the first few powers of the matrix to find a pattern: $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^1 = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^2 = \begin{bmatrix} 10 & 6 \\ 6 & 10 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^3 = \begin{bmatrix} 36 & 28 \\ 28 & 36 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^4 = \begin{bmatrix} 136 & 120 \\ 120 & 136 \end{bmatrix},$ and so on. Upon inspection, a pattern emerges: $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}^n = \begin{bmatrix} 2^{2n-1} + 2^{n-1} & 2^{2n-1} 2^{n-1} \\ 2^{2n-1} 2^{n-1} & 2^{2n-1} + 2^{n-1} \end{bmatrix}.$
- 23. (C). First, place 0s and 1s in any order in the 3×3 matrix in the upper-left hand corner. There are 2^9 ways to do this. Then place a 0 or 1, depending on what is necessary in the first three entries in the fourth row and then the entries down the fourth column. This can be done in exactly one way.
- 24. **(B)**. Since A^3 is equal to the zero matrix, the determinant of A^3 is 0, hence the determinant of A is also 0, so A is singular. The rest of the matrices are not singular, and we can explicitly construct their inverses: $(I-A)^{-1} = I + A + A^2, (I+A)^{-1} = I A + A^2,$ and $(I+A+\frac{1}{2}A^2)^{-1} = I A + \frac{1}{2}A^2.$
- 25. (B). We have $(A^2 + B^2)(A B) = A^3 A^2B + B^2A B^3$, which simplifies to the zero matrix, based on the information given in the problem. Therefore, either the determinant of $A^2 + B^2$ or A B is 0. Since A and B are different matrices, we know it's the former.
- 26. (C). ABC is not well-defined because A has 50 columns and B has 20 rows. AB^TC is not well-defined because B^T has 20 columns and C has 30 rows. CA^2B is not well-defined because C has 20 columns and A^2 has 50 rows. AB^TC^T is well-defined because A has 50 columns and B^T has 50 rows. Also, B^T has 20 columns and C^T has 20 rows.
- 27. **(D)**. The determinant of A^2 is always a non-negative square number so answer choices A, B, and C are eliminated because they all have negative determinants. D is a perfect square because $\begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}^2 = \begin{bmatrix} 11 & 7 \\ 14 & 18 \end{bmatrix}$.
- 28. **(D)**. Row operations can be performed on $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to make it look like $\begin{bmatrix} 3c & 3d \\ 4a-c & 4b-d \end{bmatrix}$. Since the second row was multiplied by 3 and the first row was multiplied by 4, the determinant is multiplied by 12. Switching rows multiplies the determinant by -1. Subtracting a multiple of a row from another row does not change the determinant. All in all, the determinant is multiplied by -12. So the value of $|\frac{m}{n}| = \frac{12}{1}$. So m+n=13.
- 29. **(E)**. Simplifying the expression, we get $e^{14} = \ln(e^e \cdot a 0)$. Exponentiate both sides to get $e^{e^{14}} = e^e \cdot a$. Solving for a yields $a = e^{e^{14} e}$.

8, and 7 for a, e, and i to make a large positive term leads to minimizing fh, cg, and bd to reduce the magnitude of the negative terms. Choosing 5, 4, and 6 for c, d, and h works to make another large positive term and minimize the magnitude of the negative

terms. 3, 1, and 2 are left for b, f, and g. The final matrix is $\begin{bmatrix} 9 & 3 & 5 \\ 4 & 8 & 1 \\ 2 & 6 & 7 \end{bmatrix}$, which has a determinant of 412.