Question	Solution
P1.	Since $y = \frac{-15x + 100}{3}$, the slope is $-\frac{15}{3} = -5$.
P2.	By inspection, $n = 2$.
P3.	We have $x = 180 - 134 = 46$.
P4.	We have $2 \ln e^{2013} = 2(2013) \ln e = 4026$.
P5.	We have $D(A + 5) + BC = (4026)(-5 + 5) + (2)(46) = 92$.
1.	Rewrite as $\sqrt{10-x} - \sqrt{4-x} = 2$, then square both sides and simplify to obtain $5-x = \sqrt{(10-x)(4-x)}$. Square both sides again and simplify and get $25-10x+x^2=40-14x+x^2$, or $4x=15$, thus $x=15/4$.
2.	Let x equal the side length of the octagon. By the Distance Formula, AD has length 5. Erect perpendiculars from B and C to AD, creating two sets of 45-45-90 triangles. Notice that AD can be expressed as $\frac{x}{\sqrt{2}} + x + \frac{x}{\sqrt{2}} = x + x\sqrt{2}$. Thus, $x + x\sqrt{2} = 5$, or $x = 5\sqrt{2} - 5$. The perimeter of the octagon is $8x = 40\sqrt{2} - 40$.
3.	By the Binomial Theorem, the term with degree 9 is $\binom{11}{9}(-4)^2(-x)^9 = \binom{11}{2}(-4)^2(-x)^9 = -(55)(16)x^9$, so the coefficient is -880 .
4.	Changing all the bases to base 2 yields $\log_2(2x) + \frac{1}{2}\log_2 x + \frac{1}{3}\log_2 x = 12$, or $\log_2\left(2x \cdot x^{\frac{1}{2}} \cdot x^{\frac{1}{3}}\right) = \log_2(2x^{\frac{11}{6}}) = 12$. In Exponential Form this is $2^{12} = 2x^{\frac{11}{6}}$, or $x = 2^6 = 64$.

5.	Note that if $B = 40\sqrt{2} - 40$, then $(B + 40)^2 = B^2 + 80B + 1600 = (40\sqrt{2})^2 = $
	3200, so that $B^2 + 80B = 1600$. Therefore, we have
	$\frac{3(B^2+80B)C}{80AD} = \frac{3(1600)(-880)}{(80)(\frac{15}{4})(64)} = -220.$
6.	Perfect squares have an odd number of positive divisors, hence it is for those
	values that the Tau Function will be congruent to 1 in modulo 2. The set of
	positive integer perfect squares less than 200 is $\{1^2, 2^2,, 14^2\}$, having 14
	elements.
7.	In standard form, the ellipse has equation $\frac{(x+20)^2}{18} + \frac{(y-13)^2}{50} = 1$. The ellipse has
	major and minor semi-axes of $\sqrt{18}$ and $\sqrt{50}$, making the area $\pi\sqrt{(18)(50)} =$
	30π .
8.	Working through the recursion formula backwards, we have $a_4 = \frac{a_5 - 3}{2} =$
	$\frac{-35-3}{2} = -19$, $a_3 = \frac{a_4-3}{2} = \frac{-19-3}{2} = -11$,, eventually leading to $a_1 = -5$.
9.	By the Remainder Theorem, the desired value is simply the polynomial
	evaluated at $x = -1$, or $-2 - 3 + 10 + 6 = 11$.
10.	We have $\frac{(A-C+D)\pi}{B} = \frac{(14-(-5)+11)\pi}{30\pi} = \frac{30\pi}{30\pi} = 1$.
11.	The polynomial factors as $(2x + 1)(x^2 - 4) = 0$, so the sum of the roots is $-\frac{1}{2}$.
	Note that this is the same value obtained via the " $-b/a$ " trick, only because
	there are no imaginary roots.
12.	Consecutive integers imply that the sequence is arithmetic with common
	difference 1. We have $a_3 + a_4 = a_3 + (a_3 + 1) = 47$, so $a_3 = 23$. By
	extension, $a_1 = 21$ and $a_{10} = 30$. The sum of the first ten terms is

	$\frac{10}{2}(21+30)=255.$
13.	If $P(x)$ does not have two distinct real roots that means the discriminant must
13.	be less than or equal to 0. So we have $(4p)^2 - 4(4)(4-3p) \le 0$, or after some
	simplifying, $(p-1)(p+4) \le 0$. The solution set to this inequality is
	$p \in [-4, 1]$, and the product of the negative integers in this interval is
	(-4)(-3)(-2)(-1) = 24.
14.	The volume of a regular octahedron with edge length s is $V = \frac{\sqrt{2}}{3}s^3$. Setting
	this equal to $4/3$ yields $s = \sqrt{2}$. The surface area of a regular octahedron with
	side length s is $S = 2s^2\sqrt{3}$. Thus, the answer is $2(\sqrt{2})^2\sqrt{3} = 4\sqrt{3}$.
15.	We have $\sqrt{B - \frac{AD^2}{C}} = \sqrt{255 - (-\frac{1}{2})(48)/24} = \sqrt{256} = 16.$
16.	If $ x - 7 \le 8$, then $-8 \le x - 7 \le 8$, or $ x \le 15$, or $-15 \le x \le 15$ since the
	absolute value of any number must be at least 0. There are 31 integers in this
	interval.
17.	By the distance formula, $d^2 = \Delta x^2 + \Delta y^2$. The set of all possible Δx and Δy are
	$\{0,1,2,3\}$ and $\{0,1,2\}$, respectively. The set of all possible nonzero values of
	d^2 is then $D = \{1, 4, 9, 5, 2, 8, 10, 13\}$. An irrational value for the distance will
	be formed for any irrational elements of D . The desired ratio is $5/8$.
18.	Transform the equation into the diagram: * ** **. Notice that there is a one-
	to-one correspondence between the diagram and a solution to the equation.
	Thus number of solutions is equal to the number of ways to arrange the
	diagram, which is $\binom{7+4-1}{4-1} = \binom{10}{3} = 120$.

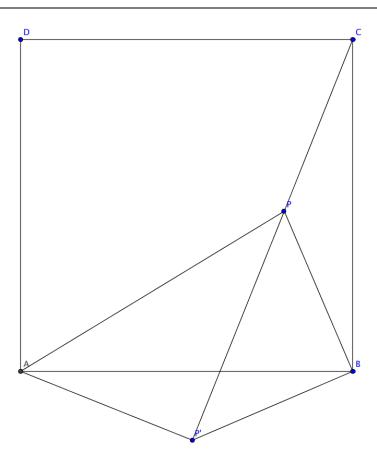
19.	There are six complex solutions to the equation, consisting of three conjugate
	pairs. The "principal" solution, $2e^{\frac{\pi}{6}i}$, has a positive real part and therefore, so
	will its conjugate. The product of two complex conjugates is the norm-square,
	so the answer is $ 2e^{\frac{\pi}{6}i} ^2 = 2^2 = 4$.
20.	We have $A + \frac{C}{BD} = 31 + \frac{120}{\left(\frac{5}{8}\right)(4)} = 79.$
21.	Notice that $39^2 + 52^2 = 25^2 + 60^2$. Thus, the quadrilateral in question
	consists of two right triangles glued together at their hypotenuse. The area is
	therefore equal to $\frac{(39)(52)+(25)(60)}{2} = 1764$.
22.	If $S = -\frac{2}{5} + \frac{5}{25} + \cdots$, then $\frac{S}{5} = -\frac{2}{25} + \frac{5}{125} + \cdots$, so that $S - \frac{S}{5} = -\frac{2}{5} + \frac{7}{25} + \frac{7}{125} + \cdots$.
	Notice that starting from the second term on, the series is geometric.
	Therefore, $S - \frac{S}{5} = \frac{4S}{5} = -\frac{2}{5} + \frac{\frac{7}{25}}{1 - \frac{1}{2}} = -\frac{1}{20}$, making $S = -1/16$.
	5 5 5 1-\frac{1}{5} 20'
23.	Since $1352 = 2^3 \cdot 13^2$, the sum of the positive divisors is $(1 + 2 + 4 + 8)(1 + 2 + 4 + 8)$
	13 + 169) = 2745.
24.	Guess-and-check yields $M = 512 = 8^3$ and $N = 343 = 7^3$, so the answer is 15 .
25.	$\left(\left(\begin{array}{c} 1 \end{array} \right)^{-1} \right)$
23.	We have $(A - C)(B^{-1} + D) = (1764 - 2745)\left(\left(-\frac{1}{16}\right)^{-1} + 15\right) = 981.$
26	Observe that M is a sout of normalization cooling matrix where the first alement
26.	Observe that M is a sort of permutation-scaling matrix, where the first element
	goes to the fourth position and gets scaled by $\frac{1}{4}$, the second element goes to the
	first position without scaling, etc. Using this reasoning, we can go backwards $\begin{bmatrix} 6 & 0 & 0 & 47 \\ 0 & 0 & 0 & 47 \end{bmatrix}$
	and deduce that $M^{-1} \times \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 4a \\ a \\ 2b \\ \frac{c}{3} \end{bmatrix}$, making $M^{-1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & \frac{1}{3} & 0 \end{bmatrix}$, so the sum
	_ 3 3 -

	of the elements of $3M^{-1}$ is $3\left(4+1+2+\frac{1}{3}\right)=22$.
27.	The sum of the roots of f is $-\frac{-3}{2} = \frac{3}{2}$, so that means the third root is $\frac{1}{2}$. Thus, the factorization of f is $f(x) = (2x - 1)(x - 3)(x + 2) = 2x^3 - 3x^2 - 11x + 6$, making $ a + b = -11 + 6 = 17$.
28.	If $\log_9 x = \log_{12} y = \log_{16}(x + y) = M$, then $9^M = x$, $12^M = y$ and $16^M = x + y$, so $9^M + 12^M = 16^M$ or after dividing both sides by 9^M and simplifying, $1 + \left(\frac{4}{3}\right)^M = \left(\left(\frac{4}{3}\right)^M\right)^2$. Note that $N = \frac{y}{x} = \frac{12^M}{9^M} = \left(\frac{4}{3}\right)^M$. Thus, the equation becomes $1 + N = N^2$, so that $N^2 - N = 1$.
29.	The parabola in standard form is $-8(x+2) = (y-3)^2$, so the vertex is at $(-2,3)$ and $p = \left -\frac{8}{4}\right = 2$. Since this is a left-facing parabola, the coordinates of the focus is $(-2-2,3) = (-4,3)$, and its distance from the origin is $\sqrt{(-4)^2+3^2} = 5$.
30.	We have $(B-C)^2 + (A+D)^{\frac{2}{3}} = (17-1)^2 + (22+5)^{\frac{2}{3}} = 256 + 9 = 265$.
31.	Suppose P has degree n . The left-hand side of the equation has degree $2n$ while the right-hand side has degree of $n+1$. Therefore, $n=1$ and P is a linear function, say $P(x)=mx+b$. Substitute this into the equation to obtain $mx^2+b+2x^2+10x=2x(m(x+1)+b)+3$, and combine like-coefficients to get $(m+2)x^2+10x+b=2mx^2+(2b+2m)x+3$. Setting corresponding coefficients to each other yields $m=2$ and $b=3$, so $P(x)=2x+3$ and $P(100)=2(100)+3=203$.
32.	We have $4^{5x-3} = 64^{7x+1}$, or $2^{2(5x-3)} = 2^{6(7x+1)}$. Setting exponents equal to each other yields $2(5x-3) = 6(7x+1)$, or $x = -3/8$.

6.0	T
33.	Refer to the diagram above. We see that the external tangent CD has the same length as AE, which is the leg of right triangle AEB. By the Pythagorean Theorem, $AE = \sqrt{AB^2 - BE^2} = \sqrt{AB^2 - (BD - DE)^2} = \sqrt{25^2 - 7^2} = 24$.
34.	Note that $a_{32} = 16 + (16 \times 2)^2 = 16(1 + (64)) = (16)(65)$ and $a_{33} = 16 + (2 \times 16 + 1)^2 = 4(16)^2 + 16 + 4(16) + 1 = (16 + 1)(4 \times 16 + 1) = (17)(65)$, so we suspect that 65 is the desired maximum GCD. Note that $(3 + 2n)a_n + (1 - 2n)a_{n+1} = 65$ for all n ; therefore, any GCD of a_n and a_{n+1} will be a multiple of 65. Thus, 65 is the maximum GCD indeed.
35.	We have $A + BC + D = 203 + \left(-\frac{3}{8}\right)(24) + 65 = 259$.
36.	Let P equal the intersection of the medians BE and AD. Point P divides the medians into a 2:1 ratio, so AP = 4 and EP = 3. Triangle APE is a right triangle with area 6, which happens to be one-sixth the area of ABC. The answer is 36 .
37.	If $8100 = 108^a 45^b 50^c$, then $2^2 \times 3^4 \times 5^2 = (2^2 \times 3^3)^a (3^2 \times 5)^b (2 \times 5^2)^c$, or $2^2 \times 3^4 \times 5^2 = 2^{2a+c} \times 3^{3a+2b} \times 5^{b+2c}$, resulting in the system: $2a + c = 2$,

	3a + 2b = 4, and $b + 2c = 2$. Use your favorite system-solving technique to
	obtain $b = 10/11$.
38.	The desired count is just the number of positive integral factors of
	$100^2 = 2^4 5^4$, or $(5)(5) = 25$.
39.	The first few terms of the sequence are $a_1=2$, $a_2=1-\frac{1}{a_1}=1-\frac{1}{2}=\frac{1}{2}$,
	$a_3 = 1 - \frac{1}{a_2} = 1 - \frac{1}{\frac{1}{2}} = -1$, and this cycle continues onward. Every three terms
	starting from the first will have a sum of 1.5, and since $833 = 3(277) + 2$, the
	desired sum is $277(1.5) + 2 + \frac{1}{2} = 418$.
	2
40.	We have $BD + A - C = \left(\frac{10}{11}\right)(418) + 36 - 25 = 391$.
41.	If $S = \{1\}$, then $\sum_{n=1}^{1} \frac{1}{\prod(S_n)} = 1$. If $S = \{1, 2\}$, then $\sum_{n=1}^{3} \frac{1}{\prod(S_n)} = 2$. In general, it
	can be proven by induction that if $S = \{1, 2, 3,, n\}$, then $\sum_{n=1}^{2^{n}-1} \frac{1}{\prod(S_n)} = n$, so
	for this problem the answer is 4 .
42.	We know that $x + 18 + 4 + 13 + 6 = 50$, making $x = 9$. By coincidence, this is
12.	also the median.
	also the mealan.
43.	The primes are 53 and 59, and they have an arithmetic mean of 56 and half
	positive difference of 3. Therefore, $\frac{1}{4}(b^2 - a^2) = \frac{b-a}{2} \cdot \frac{b+a}{2} = 3(56) = 168$.

44.



Refer to the diagram above. Take triangle CPB and rotate it across B so that C coincides with A, resulting in triangle AP'B. We have PB = P'B and $m\angle$ CBP = $m\angle$ ABP', so triangle PBP' is a 45-45-90 triangle, making PP' = $(2\sqrt{2})\sqrt{2}$ = 4. Consequently, triangle APP' is a 3-4-5 right triangle, where \angle PP'A is the right angle. To obtain the area of square ABCD, we only need to find the value of AB². Extend segment P'B into a line and drop altitude AE, as shown below.

	We have $CP = AP' = 3$ and since $AP'E$ is a 45-45-90 triangle, $AE = EP' =$
	$3/\sqrt{2}$. Thus, by the Pythagorean Theorem, $AB^2 = AE^2 + EB^2 = \left(\frac{3}{\sqrt{2}}\right)^2 +$
	$\left(\frac{3}{\sqrt{2}} + 2\sqrt{2}\right)^2 = 29.$
45.	We have $\sqrt{A} - \sqrt{B} + \sqrt{C + 1} - \sqrt{D - 4} = \sqrt{4} - \sqrt{9} + \sqrt{168 + 1} - \sqrt{29 - 4} = 7$.
46.	Since $2(3n + 5) - 3(2n + 3) = 1$, $3n + 5$ and $2n + 3$ are relatively prime. Also, since $2210 = 2 \times 5 \times 13 \times 17$, we have $\frac{2210}{(3n+5)(2n+3)} = \frac{2\times5\times13\times17}{(3n+5)(2n+3)} =$
	$5\frac{(2\times13)(17)}{(3n+5)(2n+3)}$. Setting $3n+5=26$ and $2n+3=17$ yields $n=7$. Turns out this is the only valid value for n .
47.	Add the two linear equations to obtain $5x = 20$, or $x = 4$, making $y = 2$. Thus, we have $x^2 + y^2 = 16 + 4 = 20$.
48.	There are 10 possible units digits: 0, 1,, 9. By the Pigeonhole Principle, we need at least 11 numbers in the collection.
49.	Since $25^2 < 650 < 26^2$, f will take on every integer from 1 to 25, inclusive. We find that f equals 1 for two values (1 and 2), f equals 2 for four values (3,

	4, 5, and 6), <i>f</i> equals 3 for six values, etc. Based on this pattern, we have
	$\sum_{n=1}^{650} \frac{1}{f(n)} = 2(1) + 4\left(\frac{1}{2}\right) + 6\left(\frac{1}{3}\right) + \dots + 50\left(\frac{1}{25}\right) = 2 + 2 + 2 + \dots + 2 = 25(2) = 50.$
50.	We have $(A + B)^{\frac{1}{3}} + (C + D + 3)^{\frac{1}{2}} = (7 + 20)^{\frac{1}{3}} + (11 + 50 + 3)^{\frac{1}{2}} = 3 + 8 = 11.$