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Solutions – Calculus Applications Topic Test – Mu Division

1. Its perimeter is 
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 as there are six sides, so 
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2. This is the definition of a derivative for the product rule. The answer is then A.

3. The stone’s distance traveled is given by 
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. This evaluates to 240.1. (B)

4. The maximum will be at the vertex of the parabola which is at T=80. (C)

5. The indefinite integral is 
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6. We have: 
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7. The length and distance from the wall can be defined by: 
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. The height is then: 
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. Taking a derivative we have 
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8. 
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9. Arc length is defined as 
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10. Implicit differentiation gives: 
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. Rearranging we have: 
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11. The average value is given by: 
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12. If 
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13. At t=4, p=60 so s=10. So the area is 
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14. Rewriting we have: 
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15. So we have 
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. Solving these two equations and two unknowns we get B. 

16. Simple ratios give the height of the lamppost to be 
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. Ratios can then be set up again to give the length of the shadow in terms of time: 
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 at one minute. As the man is walking at 300
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, the tip of the shadow is moving at 700
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17. The distance squared is 
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. The vertex is at 
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18. The slope of the line is equal to 
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19. The graph of r=1 is simply a circle than can be subtracted from the other area. It has area 
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20. We have 
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21. Integrating by vertical “washers”: 
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22. To get total distance we want: 
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. The parabola has zeroes at x=1 and x=5 so we have: 
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23. Simpson’s rule using parabolas to approximate, so here we know the approximation to be exact. So integrating as normal we get: 
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24. Integrating we have Jon’s displacement as: 
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. Ruben finishes at t=4 and Jon finishes at Jon,  
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25. The area of a hexagon is given by 
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. So solving for x in terms of y we have:
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 and the side lengths of the octagon will be twice as long as x. Hence the volume is 
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 which evaluates to 
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26. The function must be continuous so 
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27. The volume of the cone is 
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 and calling the distance from the base to the level of the liquid h, the filled volume is 
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. The volume is half filled when 
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28. Integrating circular rings to find the mass we have 
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29. Newton’s Method states that 
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. So after two iterations we have that 
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30. The summation can be bounded by two integrals: 
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. While this does not necessarily bound the series enough by itself to determine the closest integer, summing the first several terms by hand and then bounded the remained of the series by the integrals shows that the series converges most closely to 7. (B)
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