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 National Convention 2010
The following were changed at the resolution center at the convention: 3 E, 8 C, 22 E, 24 C or E
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2. The x-intercepts are at [image: image6.png](+3,0)



; y-intercept is at[image: image8.png]
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3. The areas are equivalent for all real number triples [image: image12.png](a, b, ¢)



. Hence, all the choices are valid. C
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, which results in the answer of [image: image16.png]
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 be the base of the triangle and [image: image32.png]14y



 be the height. By similar triangles, [image: image34.png]2+
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. With vertices at (0,0), (4,0), and (0,2), the centroid is at [image: image44.png]
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7. Model the trapezoidal base as pictured.  Then, [image: image46.png]4= 10h+hx = 10+ hy100 — k2
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, so the optimal base length is [image: image56.png]


 B
8. All are true by way of the Mean Value Theorem. E
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10. The region is an ellipse whose center we can shift horizontally to the origin without changing the resulting volume.  Then, [image: image60.png]


 B
11. The second volume expression is correct via the Shell method. B
12. The formula for average value over a continuous interval gives us [image: image62.png]i sf (e
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, the average value is [image: image66.png]


. D
13. Solve for b: [image: image68.png]
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 B
14. The corresponding Riemann integral is [image: image74.png]


.  We can compute this definite integral, or simplify  [image: image76.png]


, both of which result in an answer of  [image: image78.png]


. B
15. The graph of  [image: image80.png]


 looks like consecutive upward-facing parabolas, with a period of [image: image82.png]


. We can find the area between 0 and [image: image84.png]


, and then multiply this by 2010. The bounded area can be split into three parts. From 0 to [image: image86.png]


 is a right half of the “parabola,” between [image: image88.png]


 and [image: image90.png]


 is a rectangle with length[image: image92.png]N A



 and width 1 , and from [image: image94.png]


 to [image: image96.png]


 is a left half of the “parabola.” In one period,  [image: image98.png]
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16. The shape is a circle of radius 3 centered at (-2,1). For a torus, [image: image102.png]


 C
17. The first region of interest is bound above by the x-axis, so to preserve the correct sign of the area, we integrate backwards from [image: image104.png]


 to [image: image106.png]


: 
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, so 
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18. By solving systems of equations, the vertices are found to be: (-4,2),(2,1),(-1,-1). To find area of a polygon with vertices (xn,yn): 
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. (Can also use the formulas for distance between point and a line and then area for a right triangle to arrive at the same answer.) C
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20. By the Second Fundamental Theorem—and remembering to take the derivative of the upper limit—the expression is equivalent to [image: image118.png]241+ <4
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21. [image: image120.png]


 [image: image122.png]


 B
22. Using [image: image124.png]


 over [image: image126.png]


, the resulting approximation is [image: image128.png]


, which is equivalent to the given expression, so the answer is B
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24. [image: image132.png]


, using disk method: [image: image134.png]
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25. The sum of the series[image: image136.png]
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 turns out to be an infinite geometric series with [image: image142.png]
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26. The area of an equilateral triangle with side [image: image150.png]
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. By cross-sections, [image: image154.png](T
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27. Using the disk method: [image: image156.png]
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 The surface describes a hyperboloid because both the [image: image160.png]
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, and the [image: image164.png]yz
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 define hyperbolas. When y=0, no trace exists (with [image: image168.png]


), so the hyperboloid is in two sheets instead of one. B
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