For all questions, e. not given, means none of the above answers is correct.

1. If n is a positive integer, which of the following cannot be the units digit of 3 ⁿ ?						
a. 1	b. 3	c. 5	d. 7	e. not given		
2. For how m	2. For how many pairs of integers (a, b) where a < b does a multiplied by b equal 30?					
a. 2	b. 3	c. 4	d. 5	e. not given		
3. If $a + k = a$	for all values	of a, what is the	e value of k?			
a. –a	b1	c. a	d. 0	e. not given		
4. If $a + b = 1$ for a?	2 and both a ar	nd b are positiv	e integers, wha	at is the largest positive value		
a. 12	b. 11	c. 10	d. 9	e. not given		
5. A2C8 - A79 C66B If A, B and C are distinct digits in the correctly worked subtraction problem to the left, what is the sum of A, B and C?						
a. 18	b. 16	c. 14	d. 12	e. not given		
6. Coach Pratt lined his students up in a row. He said to Sally, "Pick the 12 th and 13 th kids in the line for they will be today's team captains". Sally replied, "Coach, from which end do I start"? "Sally", replied Coach, "It does not matter." How many kids were in line?						
a. 26	b. 25	c. 24	d. 23	e. not given		
7. Which of the following set(s) of numbers has (have) the property that the sum of any two numbers in the set is also in the set? I. the set of even integers. II. the set of prime numbers III. the set of positive integers.						
a. I only	b. II only	c. I and II onl	ly d. II a	and III only e. not given		
8. When $x = 10$, the expression $\sqrt{1+2+3+x}$ has the value of 4. How many other values of $x < 10$ for which $\sqrt{1+2+3+x}$ has an integral value?						
a. 6	b. 4	c. 3	d. 1	e. not given		

9. If x and y a odd?	are both positiv	e, x is even and	d y is odd, whic	th of the following must be
a. xy	b. $x + 2y$	c. x ^y	d. <i>y</i> ^x	e. not given
_	of of $24x^4y$ and attegers. What is		=	$ax^b y^c$, where a, b and c
a. 10	b. 19	c. 129	d. 136	e. not given
11. If 387,a42	2 is divisible by	3, then how m	nany possible va	alues of a are there?
a. 9	b. 5	c. 4	d. 3	e. not given
12. The product $ab = 1200$ and b is an odd number. Find $a + b$ where b is the greatest possible integral value that satisfies the stated conditions.				
a. 91	b. 243	c. 324	d. 1201	e. not given
13. What is the sum of all natural numbers less than 200 with exactly three factors and is not a multiple of 3?				
a. 369	b. 368	c. 364	d. 360	e. not given
14. How man	y factors of 180	00 are multiple	s of 10?	
a. 12	b. 18	c. 24	d. 36	e. not given
15. In how many zeros will the product of (20)(25)(30)(35)(40)(45)(50) end?				
a. 9	b. 8	c. 7	d. 6	e. not given
16. What is the sum of the four smallest, natural numbers that are each congruent to 5 mod 7?				
a. 57	b. 62	c. 83	d. 90	e. not given
17. Find the number of positive integers that leave a remainder of 4 when divided into 4000.				
a. 12	b. 18	c. 24	d. 30	e. not given
18. Find the largest possible, positive difference between any two numbers between 50 and 100 that have an odd number of factors?				

d. 35 e. not given

b. 23 c. 29

a. 17

19. a, b, c and d are distinct numbers. Determine the total number of divisors for the number which is the LCM for $a^4b^3c^2d$, $a^7b^5c^3d$ and $a^5b^4c^3d^2$.					
a. 120	b. 210	c. 576	d. 1080	e. not given	
20. Given the possible value		actly 27 zeros, a	and n is a multi	ple of three, what is the largest	
a. 120	b. 119	c. 118	d. 117	e. not given	
21. The smal cube lies between		nber which is to	wice a perfect s	equare is one-fifth of a perfect	
a. 225 and 30 e. not given	00 b. 150) and 225	c. 75 and 150	d. 0 and 75	
22. Let the operation * be defined by a * $b =$ the sum of all twin primes between a and b. Find 25 * 75.					
a. 612	b. 512	c. 484	d. 408	e. not given	
23. How many base 10 counting numbers will have a three digit representation in bases 4, 5 and 7?					
a. 15	b. 75	c. 242	d. 334	e. not given	
24. If the nur	nber A3640548	3981279644B is	s divided by 99	, compute the value of $A + B$.	
a. 6	b. 8	c. 10	d. 12	e. not given.	
25. For how many positive integral values of n does n! end in precisely 25 zeros?					
a. 6	b. 7	c. 8	d. 9	e. not given	
26. How many 2-digit numbers, neither of whose digits is 0, are such that the product of their digits is a square?					
a. 11	b. 13	c. 15	d. 17	e. not given	
27. The integers a, b, and c are each greater than 20. One of them has an odd number of divisors; the other two each have three divisors. If $a + b = c$, compute the smallest possible value of c.					
a. 169	b. 121	c. 49	d. 25	e. not given	

28. The integers x, y and z are each perfect squares, and $x > y > z > 0$. If x, y and z form an arithmetic progression, compute the smallest possible value of x.					
a. 121	b. 81	c. 49	e. 25	e. not given	
29. The smallest positive integer with exactly 12 divisors (including 1 and the number itself) as divisors is 60. What is the sum of the next three, smallest natural numbers with exactly 12 divisors?					
a. 312	b. 288	c. 264	d. 252	e. not given	
30. Definition: If a, k and n are positive integers with $k > 1$, and $n = ka$, then a is called a "proper divisor" of n. How many positive integers less than 54 are equal to the product of their proper divisors?					
a. 17	b. 16	c. 15	d. 14	e. not given	