1. **c**.
$$\sqrt{g-2} = 2x$$
; $g(x) = 4x^2 + 2$ so g(3)=38

2. **B**.
$$3^3 \cdot 9^9 = 3^3 (3^2)^9 = 3^{3+18} = 3^{21}$$

3. **A**.
$$r^2 = 42 - r$$
; $r = 6$ and likewise $k^2 = 6 - k$ for solution k=2.

4. $\underline{\mathbf{D}}$. The graph of g|x-1| is shifted right one unit, not changing the range, and then right of the y-axis is reflected, and since all range values are kept (low, high and all between due to domain all reals) then the range is not changed.

5. **A**.
$$-(x-1)+(3x+4)=2x+5$$

6. **B**.
$$\frac{1}{4a} = \frac{1}{4\left(\frac{1}{8}\right)} = 2$$
 so A=2 and B= -2 and A-B= 4.

7. **C**. An inverse of f and f will meet on the line
$$x=y$$
.

9.
$$\underline{\mathbf{A}}$$
. $7 + k = \frac{8}{k}$ which solves to k= -8 or 1. The positive value is 1.

11. **C**.
$$f(x) = \frac{a_1}{1-r} = \frac{x/2}{1+1/2} = \frac{x}{3}$$
 and so f(a) gives $\frac{a}{3} = 1$ to give a=3.

12. **B** When the y-coordinates are equal, the slope of the line is undefined.

13. $\overline{\underline{\textbf{c}}}$. The graph of f is a half-circle with radius 2 (square both sides). So b=2 in the parabola. Now since (2,0) is also shared, $a(2)^2 + 2 = 0$ and a=-1/2. The value of a/b is then -1/4.

Now since (2,0) is also shared,
$$a(2) + 2 = 0$$
 and a=-1/2. The value 14. **C**. $f(x) = |x\sqrt{2}|$ and so $(4\sqrt{2})^2 = 32$.

15. **B.**
$$1/(5/2) = 2/5 = 0.4$$

16.
$$\underline{\mathbf{c}}$$
. $\frac{x}{360}(\pi x^2) = \pi$ gives $x^3 = 360$, so $x = k = \sqrt[3]{360} = 2\sqrt[3]{45}$.

17. <u>A</u>. The max value of the area is when x is 90 degrees, and the rhombus is a square (since base times height is max when the height is maximum). To get A(45) we use

bh=
$$12(6\sqrt{2})=72\sqrt{2}$$

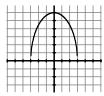
18. **B**. P(x)-2 must be 3 to give P(p-2)=2. So p(x)=5 is obtained when the inner "P" is 6.

19. **A**. 20% of 40 is 8 L of salt. So w(10)=40 since $\frac{8}{40+x} = \frac{1}{10}$ for 10%, which solves to

x=40. Likewise $\frac{8}{40+x} = \frac{1}{20}$ for 5% solves to x=120 and 40-120= -80.

20. C. Square both sides of f to get

$$4x^2 + y^2 = 36$$
 so the graph is the top half



an ellipse with height 6, and intercepts 3 and -3. y=x+3 hits the left intercept and another point in QI.

21. **A**.
$$\frac{x-1}{x+3} = 2$$
 solves to x= -7.

22.
$$\underline{\mathbf{C}}$$
. $x^2(x+3) - 4(x+3) = (x^2 - 4)(x+3)$ and roots are -3, -2, 2 so b+c= -2+2=0.

23.
$$\underline{\mathbf{D}}$$
. $f(1)$: $1+a(2)+b(3)=7$ gives $2a+3b=6$. $f(0)$: $a+2b=2$. Solve to get $a=6$ and $b=-2$. $f(-1)=-+0-2$

25. **C**.
$$(1+i)^4 + (1+i)^5 = (2i)^2 + (2i)^2(1+i) = -4 + -4(1+i) = -8-4i$$
. So a= -8 and b= -4 so b-a = 4.

26.
$$\underline{\mathbf{A}}$$
. $\log(x-1)+1=\log(2x)$, $\log(x-1)-\log(2x)=-1$, $\log\left(\frac{x-1}{2x}\right)=-1$ so $\frac{x-1}{2x}=10^{-1}$

$$\frac{x-1}{2x} = \frac{1}{10}$$
 which solves to 5/4 and 16x is 20.

27. **D**. The middle term of $f(x,4) = (1+x)^4$ has coefficient C(4,2) = 6 and the middle term

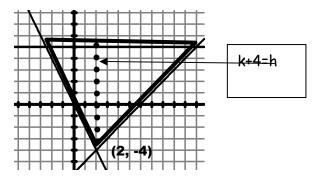
of
$$f(x,6) = (1+x)^6$$
 is $C(6,3) = 20$.

28.
$$\underline{\mathbf{C}}$$
. $f(3) = f(1) + f(2) = 4$ and $f(4) = f(3) + f(2) + f(1) = 4 + 4 = 8$.

$$f(5) = 8 + 8 = 16$$
 and $f(6)=32$.

29. A. f is always 7.

30. <u>C</u>.



The intersection of f and g is (2, -4). The line y=k will then give height of the triangle to be 4+k (the distance between -4 and positive k). The intersection of the negative slope line and y=k is given by -2x=k is x=-k/2 and the intersection of the other line and y=k is given by x-6=k is x=k+6. This gives the base of the triangle to be the distance between the x-coordinates of these

two intersections, which is
$$(k+6)-(-k/2) = k+6+k/2$$
. Now we have $\frac{1}{2}bh = \frac{1}{2}(k+6+\frac{k}{2})(4+k)$

which expands to $\frac{3}{4}k^2 + 6k + 12$. Setting this equal to 147 and multiplying by 4 gives

 $3k^2 + 24k = 540$ and dividing by 3 gives $k^2 + 8k - 180 = 0$. (k-10)(k+18)=0 for positive k=10.