1. Give the smallest positive integer A for which the x and y values of the solution to the system

 \[\begin{align*}
 54x - 4y &= 10 \\
 5x + 6y &= A
 \end{align*} \]

 are both positive.

2. An ant starts at S and crawls to A, around the large semicircle back to S, then around the small semicircle to B, and finally back to S.

 \[
 \begin{array}{c}
 A \quad S \quad B
 \end{array}
 \]

 What is the total distance traveled by the ant if $AS = \frac{2}{3}(AB)$ and $SB = 4$?

3. A survey showed that

 - 84 people like the music of Beethoven only.
 - 34 people like the music of Bach only.
 - 72 people like the music of Berlioz only.
 - A total of 100 people liked only two of the three composers.
 - 85 disliked all three.

 The number of people surveyed is the largest perfect square less than 1000. How many people like the music of all three composers?

4. Let $A = \text{the sum of the } x \text{ and } y \text{ intercepts of the graph of } 5x = 9y + 18$.

 Let $B = \text{the area of quadrilateral } WXYZ$ if $W = (2, 7)$, $X = (7, 7)$, $Y = (3, -2)$ and $Z = (-2, -2)$.

 Find the product AB.

5. A regular pentagon and a regular octagon share side \overline{WT} as shown.

 \[
 \begin{array}{c}
 S \\
 T \\
 \end{array}
 \]

 What is the degree measure of the smallest angle of triangle SRT?
6. A class contains 5 boys and 5 girls. They select seats at random around a circular table that seats 10. Find the probability that at least two girls will sit next to each other.

7. \[
\frac{1}{s - 1} - 1 = 1 \quad \text{and} \quad \frac{t + 7}{7} = \frac{13}{8}.
\]
Find the value of the product \(st\).

8. Consider all positive integer solutions to \(3x + 4y = 50\). What is the difference between the largest and smallest values of \(x\) that can occur?

9. Give the value of \(A\) where \(2^A = (1 + i)^{200} + (1 - i)^{200}\)

10. A house valued at \$90,000 in 1985 was sold for \$250,000 in 1998. Assuming that the value of the house was modeled during that period of time by the exponential function \(y = ar^t\), give the value of \(r\) to the nearest hundredth.