Vectors

Mu Alpha Theta National Convention
Chicago 1998
General Instructions:

1. Unless otherwise stated all answers should be written as decimals.
2. If you are asked to give your answer as a fraction, please give your answer in \(\frac{a}{b} \) form where \(a \) and \(b \) are relatively prime.
3. Boldface notation indicates vectors.

Questions

1. What is the product of the values of \(a \) such that \(\mathbf{A} = ai - 2j + k \) and \(\mathbf{B} = 2ai + aj - 4k \) are perpendicular?

2. Find the acute angle, in degrees, between the vectors \(\mathbf{A} = 2i + 2j - k \) and \(\mathbf{B} = 6i - 3j + 2k \). Give your answer to the nearest degree.

3. Simplify \(2\mathbf{A} + \mathbf{B} + 3\mathbf{C} - \left(\mathbf{A} - 2\mathbf{B} - 2 \left(2\mathbf{A} - 3\mathbf{B} - \mathbf{C} \right) \right) \). Write your answer as the sum of the coefficients of \(\mathbf{A} \), \(\mathbf{B} \) and \(\mathbf{C} \).

4. Evaluate \(k \cdot (i + j) \).

5. Two vectors of magnitude 6 are orthogonal. What is the magnitude of the resultant sum of these two vectors?

6. Let \(\mathbf{v}_1 = \begin{pmatrix} 3 \\ 5 \end{pmatrix} \), \(\mathbf{v}_2 = \begin{pmatrix} 1 \\ 7 \end{pmatrix} \) and \(\mathbf{v}_3 = \mathbf{v}_2 - \mathbf{v}_1 \). Find the acute angle, in degrees, between \(\mathbf{v}_3 \) and \(\mathbf{v}_1 \). Note: an alternate notation for \(\mathbf{v}_1 \) is \(3i + 5j \) and \(\mathbf{v}_2 \) is \(i + 7j \). Give answer rounded to four significant digits.

7. Evaluate \((2i - 3j) \cdot \left[(i + j - k) \times (3i - k) \right] \).

8. An automobile travels 3 miles due north, then 5 miles northeast. What is the magnitude, in miles, of the resultant vector? Give your answer rounded to four significant digits.

9. Determine the value of \(a \) so that \(\mathbf{A} = 2i + aj + k \) and \(\mathbf{B} = 4i - 2j - 2k \) are perpendicular.

10. Find the largest of the three acute angles, to the nearest degree, which the line joining the points \((1, -3, 2) \) and \((3, -5, 1) \) makes with each of the coordinate axes.
11. Find the area of a parallelogram having diagonals defined by \(\mathbf{A} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k} \) and \(\mathbf{B} = \mathbf{i} - 3\mathbf{j} + 4\mathbf{k} \).

12. Two boats are at the same place at 5:00 a.m. on a certain day. Starting at 5:00 a.m., the first boat is sailed 7.23° to the west of north at a rate of 11.44 miles per hour. The second boat does not move until 7:00 a.m. on the same day at which time it is sailed at 12.38 miles per hour in a direction 10.25° to the east of north. What is the distance, in miles, between the boats at 11:30 a.m. on the same day?

13. Find the sum of all values of \(m \) such that the vector \(4\mathbf{i} + m\mathbf{j} + \mathbf{k} \) is perpendicular to the vector \(m\mathbf{i} + (2m + 1)\mathbf{j} - 3\mathbf{k} \). Give your answer as a simplified fraction in lowest terms.

14. The two planes \(2x + 3y - 4z = 12 \) and \(x - y + z = -3 \) intersect in line \(L \). The line whose equation is \(\frac{x + 2}{-2} = \frac{y - 1}{z - 4} = \frac{z}{7} \) and line \(L \) intersect at point \((a, b, c) \). Find \(a + b + c \).

15. Two sides of a triangle are formed by the vectors \(\mathbf{A} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k} \) and \(\mathbf{B} = 4\mathbf{i} - \mathbf{j} + 3\mathbf{k} \). Determine the smallest angle to the nearest degree.

16. A plane contains the points \((1, 2, -3)\), \((0, 4, 6)\) and \((2, 3, -4)\). Find a vector perpendicular to the plane in the form \(a\mathbf{i} + b\mathbf{j} + c\mathbf{k} \) where \(a, b \) and \(c \) are relatively prime integers with \(a > 0 \). Give your answer as the value of \(a + b + c \).

17. Find the shortest distance from \((6, -4, 4)\) to the line joining \((2, 1, 2)\) and \((3, -1, 4)\).

18. Find the length of the projection of the vector \(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} \) on the vector \(\mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \). Write your answer as a simplified fraction in lowest terms.

19. Two radio stations receive a distress message from an island. Station A is 120 miles due north of Station B. Station A receives the message at a bearing of \(S 50^\circ \text{E} \) while Station B receives it at a bearing of \(N 47^\circ \text{E} \). How many minutes will a helicopter flying at 110 mph take to reach the island from Station A? Give your answer rounded to four significant digits. [Note: \(S 50^\circ \text{E} \) means 50° east of due south.]

20. Find the volume of the parallelepiped whose edges are represented by the vectors:

\[
\begin{align*}
\mathbf{A} &= 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k} \\
\mathbf{B} &= \mathbf{i} + 2\mathbf{j} - \mathbf{k} \\
\mathbf{C} &= 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}
\end{align*}
\]