Theta Division

Topic Test 1

Polynomial & Rational Functions

Mu Alpha Theta National Convention Chicago 1998

General Instructions:

- 1. Unless otherwise stated all answers should be written as decimals.
- 2. If you are asked to give your answer as a fraction, please give your answer in $\frac{a}{b}$ form where a and b are relatively prime.

Questions

- 1. What is the degree of the expression $9x^2y + 13x^3y^2 + 8x^4y^4$?
- 2. Write $\frac{3(y^3)^{10}}{y^3y^4}$ with a single positive exponent on the variable.
- 3. Let $A = \frac{x^2 9y^2}{x 3y}$ and $B = \sqrt{x^2 + 2xy + y^2}$. Find the value of A + B if x = 2.74 and y = -3.12.
- 4. What is the remainder in the division $\frac{x^4 + x^2 + 1}{x + 1}$?
- 5. Find the real value of x which satisfies $5x + 3\sqrt{x} 2 = 0$. Write your answer as a simplified fraction in lowest terms.
- 6. From a square whose side has a length x inches, create a new square whose side is 3 inches longer. Write a polynomial expression for the difference between the two areas of the two squares as a function of x.
- 7. The polynomial $x^3 23x^2 2881x 37417$ can be factored as (x a)(x b)(x c). Find |a| + |b| + |c|.
- 8. Simplify $\frac{x \frac{x}{x+1}}{x + \frac{x}{x+1}}$. Assume that the fraction is real-valued.
- 9. Let f(x) = 3x 2 and $g(x) = 2x^2 + 1$. Evaluate (g + f)(-3).

- 10. Find the sum of all real values of x such that $\frac{\sqrt{x-1}}{\sqrt{x+1}} = \frac{x-1}{3x}$. Give your answer rounded to four significant digits.
- 11. Simplify the following complex fraction, assuming $x y \neq 0$ and $x + y \neq 0$: $\frac{\frac{y}{x} \frac{x}{y}}{\frac{1}{x} + \frac{1}{y}}$.
- 12. If a, 3a, 5a, b, b+3, b+5 are all roots of a fourth degree polynomial equation where 0 < a < b, compute the sum of all possible values of a.
- 13. For how many ordered triples of positive integers (x, y, z) where $x \neq y \neq z$ is a positive integral value attained by $\frac{x}{(x-y)(x-z)} + \frac{y}{(y-x)(y-z)} + \frac{z}{(z-x)(z-y)}$.
- 14. Find the value of x which satisfies $\sqrt[3]{x\sqrt{x}} = 4$.
- 15. Solve for *n* if $3 = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{n}}}}$.
- 16. Find the positive number x for which $\sqrt{x} = \sqrt[3]{y}$ and $\sqrt{y} = 8$.
- 17. Find the sum of all rational numbers x which satisfy the equation $\frac{x + \sqrt{x}}{x \sqrt{x}} = \frac{81x(x 1)}{4}.$ Give your answer as a simplified fraction in lowest terms.
- 18. Solve for x: $\sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} = 2$.
- 19 Determine, in simplest form, the numerical value of $\sqrt[3]{7-\sqrt{50}} + \sqrt[3]{7+\sqrt{50}}$.
- 20. A quadratic polynomial, p, satisfies $p(x) = \left[\frac{p(x+1) p(x-1)}{2}\right]^2$, for all complex x. Find the value of [p(0) p(-1)] + [p(0) p(1)]. Give your answer as a simplified fraction in lowest terms.