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Mu Alpha Theta National Convention: Denver 2001

Advanced Calculus Topic Test — Solutions
Written by Richard Soliman
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. (B). 2tdt = —t+ ~sin2t| =-—
(B) /0 Ccos 5 +4S1n 1

0

. L . r24+20—r (-1)*+23)—(-1) 1
(A). By direct substitution, (T’0)1_1>r(r£1’3) P B —7(=1) =3

(B). Treating u as a constant and differentiating, M /v = 2u® + 3u sin uw.

(D). Rewrite the equation as 2? + siny — 2y® = 0 = F(z,y). Since dy/dx = —F,/F,,
we have dy/dx = —(2x — y3)/(cosy — 3zy?) = (22 — 4*)/(3zy* — cosy).

(C). A, =b/2 and Ay, = a/2 so AAp = ab/4 = A)2.

(C). We have n variables so there are clearly n! orders of integration.

. (D). Differentiating with respect to y, we get z, = 3y*> — 2z. Thus, the answer is

3(2)2 — 2(1) = 10.

(A). Recall that the mixed partial derivatives f,, and f,, are equal, making their ratio
equal to 1.

(C). If m, and m, are the moments about the x and y axes respectively and the mass
of the region is M, then the center of mass is given by (z,7) = (m,/M,m,/M). These

values are calculated as follows: m, = [[,yp(x,y)dA = fol fol_m y(z+y)dyde =1/2,

1 pl—z
mly N [[rxp(x,y)dA = [} [, " z(z +y)dyde = 1/2, and M = [[, p(z,y)dA =
Iy o Tz +ydyde =1/3. Thus, (z,7) = (3/8,3/8).
(B). We see that 3z <y <4 — 22 and 0 < x < 1 so using the order dy dz, the double
integral is ffR dA = fol 34;2: dy dzx.

(A). By the Chain Rule

d d d
d—l: = g—:d—f + g_:)d_?i = (32%)(2cost) + (4y)(—10sin 2t) = 6x° cost — 40y sin 2t

Substituting the proper values, we get 6(1)2(v/3/2) — 40(5/2)(v/3/2) = —47/3.

(C). We have D,(z,y) = 2zy and D,(z,y) = 2* so D,(2,0) + D,(0,1) =0+ 0= 0.
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(D). Setting z-values equal to each other, we find that the solids intersect in a circle
with equation 22 + y? = 9. Since 18 — 22 — y? > 22 + y? in this region, the volume of
the solid is given by the double integral

//1%(18—$2—y2)—(x2+y2)d14: //R(18—Zx2—2y2)d,4

where R is the circle centered at the origin with radius 3. Converting to polar coor-
dinates, we see that 0 < r < 3 and 0 < § < 27. Therefore ffR(18 —22? — 2y?) dA =

2T 518 — 2r) rdr df = 817

(B). VT'(z,y) = T,i+ T,j = (422° — 3y)i + (—2cosysiny — 3z)j = (422° — 3y)i —
(2siny + 3z)j.

(A). Rewrite the equation as 22° — y* + 9y/z — 25 = 0 = F(x,y,z). Computing
the partial derivatives in all directions, we get F,(x,y,z) = 62* — F,(1,2,9) = 6,
Fy(z,y,z) = =2y — F,(1,2,9) = —4, and F,(z,y,2) = 9/(2v/z) — F.(1,2,9) = 3/2.
The equation of the tangent plane is then given by 6(z—1)—4(y—2)+(3/2)(z—9) =0
or 12z — 8y + 3z = 23.

(C). Let f(z,y,2) =2+ y*+ 23— 6 and g(z,y,2) = x —y — z; thus, Vf(z,y,2) =
27i + 2yj + 32%k and Vg(z,y,z) = i—j— k. The vector Vf(2,1,1) x Vg(2,1,1) =
(4i + 2j + 3k) x (i — j — k) gives us the direction vector for the line. Evaluating the
cross product, we get i + 7j — 6k. Thus, a set of parametric equations for the line is
r=2+4+u,y=14+T7u, and z =1 — 6u. Let u = —t to obtain the answer in choice C.

(C). Since z = 8 — 2z + y, the surface area is given by [[,\/1+22+22dA =
[f; V14 (=2)2+ (1)2dA = V6(Area of R). Note that |z| + [y| < 6 is a square with
side length 6v/2. Thus, the surface area is v/6(6v/2)? = 72v/6.

(C). The directional derivative of z(z,y) in the direction of a unit vector u at (x¢, yo)
is given by Vz(zo,v0) - u. Thus, we have Vz(z,y) = i/(1 + 2?) + j/(1 + v*) and
u = (24/25)i + (7/25)j. Letting (zo,%0) = (1,1), we get (i/2 + j/2) - ((24/25)i +
(7/25)j) = 31/50.

(D). If (s,t) = (0,1), then (z,y,z) = (0,1,1). By the Chain Rule

Ou  Oudxr Oudy Oudz o
&—5$58+3y63+5w$—(y+2)(t)+(as+2>(t6 )+ (y + 2)(0)

=t(y+ 2) + t(z + 2)e™
Substitute the given values to obtain (1)(2) + (1)(1)(1) = 3.

(B). Drawing a graph, we find that 22 +1 <y < 10 and —3 < x < 0. It follows that
. . . 0 10
the integral is equivalent to [, fle o VTY dy da.



21.

22.

23.

24.

25.

26.

27.

28.

29.

(B). Let m = rcosf and n = rsinf; then as (m,n) — (0,0), r — 0. We can now
write the limit as lim,_q(7® cos® 8 + r®sin® §) /(12 sin® § 4 12 cos? ) = lim,_o(r cos® 6 +
rsin®6) =0

(C). Integrating each component of the vector field with respect to the proper variable,
we get [ 2zy+y? de = yr*+ay*+Cly andfx2+2xy dy = yx*+xy*+C(z). Comparing
these two integrals, we see that V(a: y) = yr? + zy?.

(A). By the definition of divergence

0
202) + —(y2) = 322> + 0+ y = 3z2° + y

divG = 2(zx?’) 5

ox 8y(
Thus, div G(5,12,13) = 3(13)(5)2 + 12 = 987.

(B). The first-order approximation in two variables is given by h(a + Aa, b+ Ab) ~
h(a,b) + hoAa + hyAb. Because h, = a/va?+b> and h, = b/va? + b?, we have
h(3+ 1,44 1)~ V3T + 22 + (3/v32+ 42)(.1) + (4/v/32 + 42)(.1) = 257/50.

(A). By the Arithmetic-Geometric Mean (AM-GM) Inequality
?/494+y*/16 1 S w2\ (y?\ _ wy
2 27\ \49/\16) 28

This implies that zy < 14, or 4zy < 56.

(D). Given a linear differential equation y'+a(x)y = b(x), an integrating factor is given

by el *® = Here a(r) = Inz so [ a(r)dr = zlnz — x therefore, e*"#~% = g%e=2,

(D). Let 222 +y*—92*—8 = 0 = f(z,v, 2). Since the gradient produces a vector that’s
normal to a surface, the value of V f(—2,3,1) is a direction vector for the desired line.
We have V f(x,y,2) = 4xi + 2yj — 362°k so Vf(—2,3,1) = —8i + 6j — 36k or, after
dividing each component by —2, 4i — 3j + 18k. A set of symmetric equations is then

(z+2)/4=(y—3)/(=3) = ( - 1)/18.

(A). The projection of the solid onto the zy-plane is in the shape of a semicircle of
radius 2 in the first and fourth quadrants. The height of the solid ranges from 0 < z < 1

so the triple integral in cylindrical coordinates is f:{ 32 f02 fol r (rdzdrdb).

(B). The infinite-dimensional integral is equivalent to []°7,(1 — 1/n?). It’s relatively
easy to show by induction that Hn: (1—-1/n?) = (k+1)/(2k). Taking limits gives us
limy oo (k+1)/(2k) = 1/2.
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(C). Notice that

0
8_y(€y +y?cosz) = eV + 2y cosx = %(xey + 2ysinx)
which indicates that W (z, y) is a conservative vector field. Using the same technique in
problem 22 to find potential functions, we get W(x,y) = ze? +y*sinz. By the Funda-
mental Theorem of Line Integrals, the answer is W (37/2, —1) =W (0,0) = 37/(2¢) — 1.

Oz/0u O /av> |

(B). The Jacobian d(z,y)/0(u,v) is given by the determinant of (8y/8u Dy

Solving for = and y, we get v = (v +v)/8 and y = (u — v)/2. Thus

Ox,y) |(0x/ou Ox/ov\| 0Oxdy OJydr 1
I(u,v)  |[\Oy/Ou 0y/Ov

T Oudv Oudv 8

(D). Since 0 < z2<4—y—22,0<z<2-—y/2—2/2. Project the solid into the
yz-plane to obtain the bounds 0 <y < 4 — 2z and 0 < z < 4. The triple integral is
then f04 04_Z 2V2E ez da dy dz.

0

(A). Let M = 32%y + cosz and N = 2% + 4xy3 + sin5y. Since C is simple closed
curve, we can calculate the line integral using Green’s Theorem rather than evaluating
separately for each smooth path.

fde—i—Ndy—//a—N—a—MdA—//(3x2+4y3)—(3x2)dA—//4y3dA
c r Oz dy R R

where R = {(z,y)|2? < y < 1,0 < z < 1}. Using the order dydx, we have
ffR4y3dA:folf;24y3dydx:foll—:v8dx:8/9.

(A). By Gauss’ Divergence Theorem, the flux is given by

//SS.NdS:///QdideV:///QQJrl—de:///Qdv

which is just the volume of the solid formed by the surface; in this case, a sphere of
radius 9. So the flux is equal to 47(9)3/3 = 9727.

(B). The roots of the characteristic equation m? —8m+ 15 =0 are m = 5 and m = 3.
Thus, the general solution is given by y = ae3® + be>®.

(D). If E is a vector field, div (curl E) = 0.

(C). Let d(x,y) = CpuCyy — (Cyy)* = (62)(6y) — (—3)? = 362y — 9. Since d(1,1) >0
and C,,(1,1) > 0, (1,1, —1) is a relative minimum by the Second Partials Test.

(C). The plane y = 3x intersects the plane y = 3 when x = 1. If the order of
integration is dz dy dx, the bounds are 0 < 2 < /9 —92, 3x <y <3,and 0 < x <1

so the value of the triple integral is fol f;; I VL dx dy dx = 27/8.
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(B). The distance from the origin to (x,y) is /2> 4+ y%> = p(x,y) so the mass of the
lamina is [[, p(x,y)dA = [[,\/2? 4+ y?dA. Switch to polar coordinates and obtain
J2R S (e dr d) = [P 212 dr d = 1257 /6.

= t%e! + te! — tet = 2’ — W(t,te')(2) = 4e>.

(D). W, te")(t) = ‘G tefi et)



