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Advanced Calculus Topic Test – Solutions

Written by Richard Soliman

1. (B).

∫ π/2

0

cos2 t dt =
1

2
t +

1

4
sin 2t

∣∣∣∣π/2

0

=
π

4

2. (A). By direct substitution, lim
(r,θ)→(−1,3)

r2 + 2θ − r

θ2 − 7r5
=

(−1)2 + 2(3)− (−1)

(3)2 − 7(−1)5
=

1

2
.

3. (B). Treating u as a constant and differentiating, ∂M/∂v = 2u2 + 3u sin uv.

4. (D). Rewrite the equation as x2 + sin y − xy3 = 0 = F (x, y). Since dy/dx = −Fx/Fy,
we have dy/dx = −(2x− y3)/(cos y − 3xy2) = (2x− y3)/(3xy2 − cos y).

5. (C). Aa = b/2 and Ab = a/2 so AaAb = ab/4 = A/2.

6. (C). We have n variables so there are clearly n! orders of integration.

7. (D). Differentiating with respect to y, we get zy = 3y2 − 2x. Thus, the answer is
3(2)2 − 2(1) = 10.

8. (A). Recall that the mixed partial derivatives fxy and fyx are equal, making their ratio
equal to 1.

9. (C). If mx and my are the moments about the x and y axes respectively and the mass
of the region is M , then the center of mass is given by (x, y) = (mx/M,my/M). These

values are calculated as follows: mx =
∫∫

R
yρ(x, y) dA =

∫ 1

0

∫ 1−x

0
y(x + y) dy dx = 1/2,

my =
∫∫

R
xρ(x, y) dA =

∫ 1

0

∫ 1−x

0
x(x + y) dy dx = 1/2, and M =

∫∫
R

ρ(x, y) dA =∫ 1

0

∫ 1−x

0
x + y dy dx = 1/3. Thus, (x, y) = (3/8, 3/8).

10. (B). We see that 3x ≤ y ≤ 4− x2 and 0 ≤ x ≤ 1 so using the order dy dx, the double

integral is
∫∫

R
dA =

∫ 1

0

∫ 4−x2

3x
dy dx.

11. (A). By the Chain Rule

dw

dt
=

∂w

∂x

dx

dt
+

∂w

∂y

dy

dt
= (3x2)(2 cos t) + (4y)(−10 sin 2t) = 6x2 cos t− 40y sin 2t

Substituting the proper values, we get 6(1)2(
√

3/2)− 40(5/2)(
√

3/2) = −47
√

3.

12. (C). We have Dx(x, y) = 2xy and Dy(x, y) = x2 so Dx(2, 0) + Dy(0, 1) = 0 + 0 = 0.
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13. (D). Setting z-values equal to each other, we find that the solids intersect in a circle
with equation x2 + y2 = 9. Since 18− x2 − y2 ≥ x2 + y2 in this region, the volume of
the solid is given by the double integral∫∫

R

(18− x2 − y2)− (x2 + y2) dA =

∫∫
R

(18− 2x2 − 2y2) dA

where R is the circle centered at the origin with radius 3. Converting to polar coor-
dinates, we see that 0 ≤ r ≤ 3 and 0 ≤ θ ≤ 2π. Therefore

∫∫
R
(18 − 2x2 − 2y2) dA =∫ 2π

0

∫ 3

0
(18− 2r2) r dr dθ = 81π.

14. (B). ∇T (x, y) = Txi + Tyj = (42x6 − 3y)i + (−2 cos y sin y − 3x)j = (42x6 − 3y)i −
(2 sin y + 3x)j.

15. (A). Rewrite the equation as 2x3 − y2 + 9
√

z − 25 = 0 = F (x, y, z). Computing
the partial derivatives in all directions, we get Fx(x, y, z) = 6x2 → Fx(1, 2, 9) = 6,
Fy(x, y, z) = −2y → Fy(1, 2, 9) = −4, and Fz(x, y, z) = 9/(2

√
z) → Fz(1, 2, 9) = 3/2.

The equation of the tangent plane is then given by 6(x−1)−4(y−2)+(3/2)(z−9) = 0
or 12x− 8y + 3z = 23.

16. (C). Let f(x, y, z) = x2 + y2 + z3 − 6 and g(x, y, z) = x − y − z; thus, ∇f(x, y, z) =
2xi + 2yj + 3z2k and ∇g(x, y, z) = i − j − k. The vector ∇f(2, 1, 1) × ∇g(2, 1, 1) =
(4i + 2j + 3k) × (i − j − k) gives us the direction vector for the line. Evaluating the
cross product, we get i + 7j − 6k. Thus, a set of parametric equations for the line is
x = 2 + u, y = 1 + 7u, and z = 1− 6u. Let u = −t to obtain the answer in choice C.

17. (C). Since z = 8 − 2x + y, the surface area is given by
∫∫

R

√
1 + z2

x + z2
y dA =∫∫

R

√
1 + (−2)2 + (1)2 dA =

√
6(Area of R). Note that |x| + |y| ≤ 6 is a square with

side length 6
√

2. Thus, the surface area is
√

6(6
√

2)2 = 72
√

6.

18. (C). The directional derivative of z(x, y) in the direction of a unit vector u at (x0, y0)
is given by ∇z(x0, y0) · u. Thus, we have ∇z(x, y) = i/(1 + x2) + j/(1 + y2) and
u = (24/25)i + (7/25)j. Letting (x0, y0) = (1, 1), we get (i/2 + j/2) · ((24/25)i +
(7/25)j) = 31/50.

19. (D). If (s, t) = (0, 1), then (x, y, z) = (0, 1, 1). By the Chain Rule

∂u

∂s
=

∂u

∂x

∂x

∂s
+

∂u

∂y

∂y

∂s
+

∂u

∂z

∂z

∂s
= (y + z)(t) + (x + z)(test) + (y + x)(0)

= t(y + z) + t(x + z)est

Substitute the given values to obtain (1)(2) + (1)(1)(1) = 3.

20. (B). Drawing a graph, we find that x2 + 1 ≤ y ≤ 10 and −3 ≤ x ≤ 0. It follows that

the integral is equivalent to
∫ 0

−3

∫ 10

x2+1

√
xy dy dx.

2



21. (B). Let m = r cos θ and n = r sin θ; then as (m, n) → (0, 0), r → 0. We can now
write the limit as limr→0(r

3 cos3 θ + r3 sin3 θ)/(r2 sin2 θ + r2 cos2 θ) = limr→0(r cos3 θ +
r sin3 θ) = 0

22. (C). Integrating each component of the vector field with respect to the proper variable,
we get

∫
2xy+y2 dx = yx2+xy2+C(y) and

∫
x2+2xy dy = yx2+xy2+C(x). Comparing

these two integrals, we see that V (x, y) = yx2 + xy2.

23. (A). By the definition of divergence

divG =
∂

∂x
(zx3) +

∂

∂y
(−2xz) +

∂

∂z
(yz) = 3zx2 + 0 + y = 3zx2 + y

Thus, divG(5, 12, 13) = 3(13)(5)2 + 12 = 987.

24. (B). The first-order approximation in two variables is given by h(a + ∆a, b + ∆b) ≈
h(a, b) + ha∆a + hb∆b. Because ha = a/

√
a2 + b2 and ha = b/

√
a2 + b2, we have

h(3 + .1, 4 + .1) ≈
√

32 + 42 + (3/
√

32 + 42)(.1) + (4/
√

32 + 42)(.1) = 257/50.

25. (A). By the Arithmetic-Geometric Mean (AM-GM) Inequality

x2/49 + y2/16

2
=

1

2
≥

√(
x2

49

) (
y2

16

)
=

xy

28

This implies that xy ≤ 14, or 4xy ≤ 56.

26. (D). Given a linear differential equation y′+a(x)y = b(x), an integrating factor is given
by e

∫
a(x) dx. Here a(x) = ln x so

∫
a(x) dx = x ln x− x therefore, ex ln x−x = xxe−x.

27. (D). Let 2x2+y2−9x4−8 = 0 = f(x, y, z). Since the gradient produces a vector that’s
normal to a surface, the value of ∇f(−2, 3, 1) is a direction vector for the desired line.
We have ∇f(x, y, z) = 4xi + 2yj − 36z3k so ∇f(−2, 3, 1) = −8i + 6j − 36k or, after
dividing each component by −2, 4i − 3j + 18k. A set of symmetric equations is then
(x + 2)/4 = (y − 3)/(−3) = (z − 1)/18.

28. (A). The projection of the solid onto the xy-plane is in the shape of a semicircle of
radius 2 in the first and fourth quadrants. The height of the solid ranges from 0 ≤ z ≤ 1

so the triple integral in cylindrical coordinates is
∫ π/2

−π/2

∫ 2

0

∫ 1

0
r (r dz dr dθ).

29. (B). The infinite-dimensional integral is equivalent to
∏∞

n=2(1− 1/n2). It’s relatively

easy to show by induction that
∏k

n=2(1− 1/n2) = (k + 1)/(2k). Taking limits gives us
limk→∞(k + 1)/(2k) = 1/2.
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30. (C). Notice that

∂

∂y
(ey + y2 cos x) = ey + 2y cos x =

∂

∂x
(xey + 2y sin x)

which indicates that W(x, y) is a conservative vector field. Using the same technique in
problem 22 to find potential functions, we get W (x, y) = xey + y2 sin x. By the Funda-
mental Theorem of Line Integrals, the answer is W (3π/2,−1)−W (0, 0) = 3π/(2e)−1.

31. (B). The Jacobian ∂(x, y)/∂(u, v) is given by the determinant of

(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)
.

Solving for x and y, we get x = (u + v)/8 and y = (u− v)/2. Thus

∂(x, y)

∂(u, v)
=

∣∣∣∣(∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v
= −1

8

32. (D). Since 0 ≤ z ≤ 4 − y − 2x, 0 ≤ x ≤ 2 − y/2 − z/2. Project the solid into the
yz-plane to obtain the bounds 0 ≤ y ≤ 4 − z and 0 ≤ z ≤ 4. The triple integral is

then
∫ 4

0

∫ 4−z

0

∫ 2−y/2−z/2

0

√
xyz dx dy dz.

33. (A). Let M = 3x2y + cos x and N = x3 + 4xy3 + sin 5y. Since C is simple closed
curve, we can calculate the line integral using Green’s Theorem rather than evaluating
separately for each smooth path.∮

C

Mdx + Ndy =

∫∫
R

∂N

∂x
− ∂M

∂y
dA =

∫∫
R

(3x2 + 4y3)− (3x2) dA =

∫∫
R

4y3 dA

where R = {(x, y)|x2 ≤ y ≤ 1, 0 ≤ x ≤ 1}. Using the order dy dx, we have∫∫
R

4y3 dA =
∫ 1

0

∫ 1

x2 4y3 dy dx =
∫ 1

0
1− x8 dx = 8/9.

34. (A). By Gauss’ Divergence Theorem, the flux is given by∫∫
S
S ·N dS =

∫∫∫
Q

divS dV =

∫∫∫
Q

2 + 1− 2 dV =

∫∫∫
Q

dV

which is just the volume of the solid formed by the surface; in this case, a sphere of
radius 9. So the flux is equal to 4π(9)3/3 = 972π.

35. (B). The roots of the characteristic equation m2− 8m + 15 = 0 are m = 5 and m = 3.
Thus, the general solution is given by y = ae3x + be5x.

36. (D). If E is a vector field, div (curlE) = 0.

37. (C). Let d(x, y) = CxxCyy − (Cxy)
2 = (6x)(6y)− (−3)2 = 36xy − 9. Since d(1, 1) > 0

and Cxx(1, 1) > 0, (1, 1,−1) is a relative minimum by the Second Partials Test.

38. (C). The plane y = 3x intersects the plane y = 3 when x = 1. If the order of
integration is dz dy dx, the bounds are 0 ≤ z ≤

√
9− y2, 3x ≤ y ≤ 3, and 0 ≤ x ≤ 1

so the value of the triple integral is
∫ 1

0

∫ 3

3x

∫√9−y2

0
z dz dy dx = 27/8.
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39. (B). The distance from the origin to (x, y) is
√

x2 + y2 = ρ(x, y) so the mass of the

lamina is
∫∫

R
ρ(x, y) dA =

∫∫
R

√
x2 + y2 dA. Switch to polar coordinates and obtain∫ 3π/2

π

∫ 5

0
r (r dr dθ) =

∫ 3π/2

π

∫ 5

0
r2 dr dθ = 125π/6.

40. (D). W (t, tet)(t) =

∣∣∣∣(t tet

1 tet + et

)∣∣∣∣ = t2et + tet − tet = t2et → W (t, tet)(2) = 4e2.
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