
Mu Alpha Theta National Convention:  Denver, 2001 
Number Theory Topic Test Solutions – Mu Division 

1. The easiest way to solve this problem is to find the total possible values of m because for 
each m there is exactly one possible n to pair with.  The possible values of m consist of 
the total number of possible factors (positive and negative) of 840.  The total number of 
positive factors of a number can be derived from that number’s prime factorization.  
Add one to each of the exponents in the prime factorization (the total number of choices 
for the exponent of that prime in a factor) and multiply those numbers together (they 
are chosen independently from one another to identify each factor).  The prime 
factorization of 840 has four primes (2, 3, 5, 7) with exponents of 3, 1, 1, and 1 
respectively.  So there are (3+1)(1+1)(1+1)(1 + 1) = 32 possible positive values for m, 
and also 32 negative values.  For each m, there is exactly one n.  There are 64 different 
ordered pairs. 

2. 15,625 = .  = ( -1)/(5-1) = 3,906. 65 ∑
=
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3. The trick is to find the number of powers of 10 which divide 15,634!.  This means 
finding the exponents of 2 and 5 in the prime factorization of 15,634!.  The exponent of 
2 will clearly be greater than the exponent of 5, so we only need find the exponent of 5.  
15,634/5 = 3,126 with a remainder.  3,126/5 = 625 with a remainder.  625/5 = 125.  125/5 
= 25.  25/5 = 5 and 5/5 = 1.  That means that there are 3,126 + 625 + 125 + 25 + 5 + 1 = 
3,907 times in which 5 is included in the prime factorization of 15,634!.  Thus 3,907 is 
the answer. 

4. Using the same method of factor counting as in problem #1, we can arrange 32 as the 
product of exponents (+1) in several ways.  32 = (4)(2)(2)(2) = (4)(4)(2), etc.  We can 
make the problem easier by noting that we can produce a smaller number with four 
factors using only powers of 3 than with a single factor of 3 and a prime greater than 3 
x 3  (for instance, 27 is less than 33 or 39).  Noting such relationships we can see that 32 
= (4)(2)(2)(2) produces the smallest possible integer using the smallest odd primes (3, 5, 
7, and 11).  (3)(3)(3)(5)(7)(11) = 10,395.  

5. There is a theorem that I have heard called the “Chicken Mcnugget Theorem” which 
gives a solution for a diophantine equation with only two relatively prime variables (a 
and b) instead of three.  The formula is fairly easy to derive and shows that d = ab – a – 
b.  I leave it as an exercise to the solvers to derive the formula for more variables. 

6. 91 = 7 x 13.  111 = 3 x 37.  297 = 3 x 3 x 3 x 11.  The LCM is thus 3 x 3 x 3 x 7 x 11 x 13 x 
37 = 999,999. 

7. 82,861 = 41 x 43 x 47.  41 + 43 + 47 = 131. 

8.  = 4(64) + 3(8) +2 = 282 = + 8n + 9.   Thus + 8n – 273 = 0.  Solutions for n are 
13 and –21.  Discard the negative solution. 

8432 2n 2n
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9. There is a simple theorem in modular arithmetic that says that when we are looking for 
a set of number s with the same congruence in two different mods, then we are looking 
for the set of numbers that has that same congruence in the LCM of the two previous 
mods.  The LCM of 3 and 11 is 33.  We are looking for the smallest prime with a 
congruence of 1 (mod 33).  A quick search reveals 67 as the answer. 

10. Rewriting the Fibonacci numbers in (mod 3) reveals a pattern which repeats in cycles of 
4 with only one of the numbers in that cycle being congruent to 0 (mod 3).  Thus exactly 
100 of the first 400 Fibonacci’s are multiples of 3. 

11. 280 is the only one of the answer choices which leaves a remainder of 7 when divided by 
13. 

12. Call the number AB where A is the tens digit and B is the units digit.  

   BA – AB = 10(B - A) + (A - B) = 9(B - A) = 27.  Thus B – A = 3. 

13. A quick way of solving this problem is to note that 121  = (8 + 1)(8 + 1) = (7 + 2)(7 + 2) 
= 144 .  Base numbers still obey regular algebraic manipulation. 

8

7

14. 840 =  x 3 x 5 x 7.  Consider that the sum of all of the factors can be determined by: 32

(  +  +  + 1)(  + 1)(5  + 1)( 7  + 1)   because each and every factor is represented 
one and only once as one of the products of a power of each of the prime numbers in 
840’s prime factorization.  Also notice that (  +  +  + 1)(2 - 1) = ( - 1).  So a 
more compact formula can be derived to find the sums of factors of ANY integer. [Try 
to derive this formula completely as an exercise.] 

32 22 12 13 1 1

32 22 12 42

 The sum of all of its positive factors is thus 

 [( 2 -1)(3 )( 5 )( 7 )]/[(2 - 1)(3 - 1)(5 - 1)(7 - 1)] = 2880.  4 12 − 12 − 12 −

15. The sum, A,  need only be calculated up to the point at which all subsequent terms are 
multiples of 144.  Thus only the first 5 terms need be calculated.  The sum of those 
terms is 1 + 2 + 6 + 24 + 120 = 153.  The remainder when 153 is divided by 144 is 9. 

16. First not that B ≡ -1 (mod 3)  and  B ≡ -1 (mod 8)  => B ≡ -1 (mod 24).  Thus B ≡ -1 (mod 
12)  => B ≡ 11 (mod 12). 
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17. The greatest integer less than the cube-root of 100,000 is 46.  The sum of the first 46 
positive perfect cubes is the square of the 46th triangular number.  (46)(47)/2 = 1,081.  
(1,081)(1,081) = 1,168,561. 

18.  (15 )(10 ) = (  )( )(5 ).  Divide both this number and 128 by 32.  Now take the 
remaining portion of the large number and find its remainder when divided by 4 
(which is 128/32):  (3 )(5 )≡  (-1 ) (1 ) (mod 4) 

3 5 52 33

3

8

8 3 8 ≡  -1 (mod 4) ≡  3 (mod 4).  Multiplying 
both sides back by 32 tells the solver that the original number is congruent to 96 (mod 
128).  

19. 42a + 3(40a) ≡ 0 + 3(1) (mod 7).  Thus 162a ≡ 3 (mod 7). 

20. 5A55B ≡ 0 (mod 72)  =>  5A55B ≡ 0 (mod 8) and 5A55B ≡ 0 (mod 9). 

 5A55B ≡ 0 (mod 8)  =>  55B ≡ 0 (mod 8)  =>  B + 6  ≡ 0 (mod 8).  B = 2. 

 5A55B ≡ 0 (mod 9)  =>  A + B + 15  ≡ 0 (mod 9)  =>  A + 17  ≡ 0 (mod 9).  A = 1. 

21. The difference between their ages must be a multiple of the LCM of Katie’s ages on 
those 7 birthdays.  The smallest that LCM could be is 420.  On the last birthday Bart 
must have been 427. 

22. N is 2 less than a multiple of 3, 5, 7, and 9.  The LCM of 3, 5, 7, and 9 is 315.  315 – 2 = 
313. 

23. 7 = 2,401 ≡ 400 + 1 (mod 1,000).  Take that result to the fifth power: 4

 ≡ (400 + 1  (mod 1,000) ≡ 5(400) + 1 (mod 1,000) ≡ 1 (mod 1,000).  207 5)

 Thus 7  ≡  (mod 1,000) ≡ (1)(401) (mod 1,000) ≡ 401 (mod 1,000).  404 )20(207 47

 Hence the hundreds digit of 7  is 4. 404

24. We are hunting for integers, N, such that N ≡ 5 (mod 16), N ≡ 6 (mod 25), and N ≡ 7 
(mod 36).  From the first of these relations, we know that N ≡ 1 (mod 4), but that 
contradicts the third relation which shows that N ≡ 3 (mod 4).  Thus there are no such 
integers.   

25. 11x ≡ 65 (mod 67)  =>  11x ≡ 65 + 67 (mod 67)  =>  11x ≡ 132 (mod 67)  =>  x ≡ 12 (mod 
67).  All of the answers except for 6,567 are congruent to 12 (mod 67). 
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26. We are looking for natural numbers that are perfect squares.  First, we sum the first 51 
positive perfect squares to get (51)(52)(103)/6 = 45,526.  We then subtract 1 to get 
45,525.  

27. Given  x ≡ 2 (mod 4), we can say x = 4a –2 for some positive integer, a.  Then from the 
second equation, 4a -2 ≡ 3 (mod 9)  =>  4a ≡ 5 (mod 9)  =>  a ≡ 8 (mod 9) and thus we 
can say a = 9b – 1 for some positive integer, b.  Thus x = 36b – 6.  Finally, from the last 
equation, 36b – 6  ≡ 5 (mod 25)  =>  36b ≡ 11 (mod 25)  =>  b ≡ 1 (mod 25).  Thus we can 
say that b = 25c – 24 for some positive integer, c.  Thus x = 900c – 870.  930 is the second 
smallest positive solution. 

28. An integer expressed in a base, B, is a multiple of (B – 1) if and only if the sum of the 
integer’s digits is a multiple of (B – 1).  This can be easily proven by induction (or other 
means) and is left as an exercise for the students.  Now, we need only look at numbers 
with digit sums of 4 (8, 12, etc. would be far too large) in base 5.  The second smallest of 
these is 10 = 656. 5111,

29. The product can be written as - 1 and factored into (x + 1)(x – 1).  If the only prime 
factors are between 60 and 80, they must have a difference of [(x + 1) – (x – 1)] = 2.  The 
only twin primes in that range are 71 and 73.  73 is the larger. 

2x

30. Notice that AAAA can be factored into (AA)(101).  Also, AA + 2 = 101.  Q is thus 101. 

31. This problem requires separating the cases of p =2 and p =3 from other cases because 
they are factors of 24.  They clearly have their own solutions for b.  For p > 3 we will 
evaluate: We can first write p as (2m + 1) and then evaluate (mod 8) . 2p

  = 4 + 4m + 1 = 4m(m + 1) + 1.  Either m or (m + 1) is even, thus  2p 2m

 4m(m+1) + 1  1 (mod 8).  Also, such p are either congruent to 1 or –1 (mod 3) and 
thus                 is congruent to 1 (mod 3).  is thus also congruent to 1 (mod 24).  This is 
true for all primes which are not 2 or 3 and so there are exactly 3 possible values for b. 

≡
2p 2p

32. The product of eight consecutive triangular numbers can be written as the product of 
eight consecutive integers (starting with n) and then another eight consecutive integers 
(starting with n + 1), divided by 2 to the eighth power.  It is easy to see that out of any 
eight consecutive integers, there are 4 even integers, 2 multiples of 4, and 1 multiple of 
8.  Overall, the product of the eight consecutive triangular numbers must therefore be a 
multiple of 64. 
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33. The sum of the first n counting numbers is always the square of the nth triangular 
number.  The only even number that is not composite is 2.  Thus 49 of the first 50 even 
counting numbers are stupid political candidates.   

34. (A, B, C, D) = (A, B, 2B, 8B).  8B is a multiple of 9 meaning that B is a multiple of 9.  
Let B = 9x, x is an integer.  Then A + B + C + D = A + 99x = 100.  Since x is an integer, x 
can only be 1 and thus A = 1. 

35. By Fermat’s Little Theorem we know that 5 ≡ 1 (mod 11).  From this we can 
determine that ≡ (1 )(5) (mod 11) ≡ 5 (mod 11). 

111−

1)20)(10(5 + 20

36. The number in question is at least  and less than .  There are a couple of ways to 
do the problem from here.  Some students may recognize that log2  .301.  (31)(.301) = 
9.331 and (32)(.301) = 9.632.  Thus both  and  are ten digit numbers (logs 
between 9 and 10).  It could also be noted that 

312 322
≅

312 322
102 ≅  10  and thus   2(10 ) and is a 

ten digit number (similarly for ).  Obviously all numbers between 2  and  are 
also ten digit numbers. 

3 312 ≅
31

9

2322 32

37. Solving this problem involves a degree of deduction taking several factors into 
consideration.  We can rule out even values of N.  We can also note that phi(10) = 4 and 
phi(100) = 40.  This will help limit our search as we know that the units digit of 3  
repeats in a 4-cycle and the last pair of digits repeats in (at most) a 40-cycle.  In fact, 
noting that 3 x 3 x 3 x 3 = 81 = (80 + 1), we can see by binomial expansion that taking 81 
to the fifth power produces a number with a units digit of 1 and a tens digit of 0.  Thus 

 repeats its last two digits in a 20-cycle.  Now we must simply look for where ≡ 0 
(mod 20) and adjust N  by adding/subtracting multiples of 20.  We thus need only check 
the first 20 positive integers (and only the 10 odd ones of those). 

N

N3N3

 We can rule out most of these by comparing the 4-cycle of units digits.  If N ≡ 1 (mod 4), 
then the units digit of 3  will be 3. If N ≡ 3 (mod 4), the units digit will be 7.  The only N 
that need be tested are thus 7 and 13.  ≡ N  (mod 20) for 7, but not 13.  The tens digit of 

 is 8, thus 87 is the only solution such that  ≡ N  (mod 100). 

N

N3
73 N3

38. Given K ≡ 1 (mod3), we can equate K = 3a – 2 for some positive integer, a.  Substituting 
for K into K ≡ 3 (mod 5) yields the relationship 3a – 2 ≡ 3 (mod 5)  =>  3a ≡ 0 (mod 5)  
=>  a ≡ 0 (mod 5) and so we can equate a = 5b for some positive integer b and thus K = 
15b – 2.  Substituting  for K into K ≡ 7 (mod 11) yields 15b – 2 ≡ 7 (mod 11)  =>   15b  ≡ 
9 (mod 11)  =>  5b ≡ 3 (mod 11)  =>  5b ≡ 25 (mod 11)  =>  b ≡ 5 (mod 11) and so we can 
relate b = 11c – 6 for some positive integer, c.  Thus K = 165c – 92. 
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 The sum is equivalent to  = ( ) – (20)(92) = 165( ) – 1,840 )92165(
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 165( ) – 1,840 = 165(20)(21)/2 – 560 = 34,650 – 1,840 = 32,810. ∑
=

20

1n
n

39. The Fibonacci numbers will always be cyclical in any mod because a term is defined by 
its predecessors and there are a limited number of possible combinations for a pair of 
predecessors which would then produce the same cyclical pattern each time that pair 
occurs.  The trick is just to write down the modular residues of the Fibonacci numbers 
(mod 9) until the cycle is found: 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 
0, 1, 1, etc.  The 1st pair of terms (1, 1) reappeared as the 25th pair.  The cycle is thus a 
24-cycle, thus m = 24. 

40. This problem is much easier given a knowledge of the arithmetic mean-geometric mean 
(A.M.-G.M) inequality.  For any two positive numbers a and b, their A.M. is greater 
than or equal to their G.M.  Given a fixed G.M., the A.M. is smaller when the difference 
between a and b is smaller (this is left as an exercise for the students to prove).  So, the 
solution to this problem involves finding three numbers that are relatively prime and 
considering whether or not there is a way to reduce the A.M. of any pair of them (given 
that they HAVE a G.M. already).  The numbers turn out to be 5, 9, and 16.  The sum is 
30. 

 


