1. Simplify: $(4 - i\sqrt{3}) - (3i - 2)$ (A) $6 - (3 + \sqrt{3})i$ (B) $6 - 3i\sqrt{3}$ (C) $2 - (3 + \sqrt{3})i$ (D) $2 - (3 - \sqrt{3})i$ (E) NOTA 2. Find the sum of the following complex numbers: 4+3i, 2i-1, 4i+7, 2-6i, 6+i(A) 18 + 4i(B) 10 - 6i(C) 23 + 10i(D) -2+10i(E) NOTA 3. Evaluate: (5-4i)(i+4)(A) 18+12*i* (B) -4+23i (C) 24-11i (D) 9+5i(E) NOTA 4. Evaluate: $(4 - 3i\sqrt{3})(2 + 6i\sqrt{3})$ (B) $48\sqrt{3} + 12i$ (A) $-16\sqrt{3} + 18i\sqrt{3}$ (D) $16\sqrt{3} + 18i\sqrt{3}$ (C) $62 + 18i\sqrt{3}$ (E) NOTA 5. Evaluate: $\frac{3+2i}{4+2i}$ (A) 1+i (B) $\frac{8+i}{10}$ (C) 1-2i (D) i+2(E) NOTA 6. Solve for b: $5 + \frac{b}{2 + i\sqrt{2}} - \frac{b}{2 - i\sqrt{2}} = 0$ (D) $-\frac{15i\sqrt{2}}{2}$ (E) NOTA (A) 4+i (B) $3i\sqrt{2}$ (C) 4 7. Determine the sum of A and B in the system of equations. 2A + B = 3i - 83A + 2B = 5 + 4i

(A)
$$5i$$
 (B) $\frac{2+3i}{3}$ (C) $-4+5i$ (D) $13+i$ (E) NOTA

8. How many complex roots does $f(x) = 3x^3 - 15x - 9$ have?

(A) 0 (B) 1 (C) 2 (D) 3 (E) NOTA

- 9. What is the sum of the roots of $f(x) = 2x^2 + 6x 53$?
 - (A) -4 (B) -3 (C) 4 (D) 6 (E) NOTA
- 10. What is the product of the roots of $f(x) = 2x^2 3x + 4$?

(A) 1 (B)
$$\frac{3}{2}$$
 (C) 2 (D) 3 (E) NOTA

11. What is the product of the roots of $y = x^3 + 2x^2 - 3x + 4$?

- (A) -4 (B) -3 (C) 3 (D) 4 (E) NOTA
- 12. What is the sum of the reciprocals of the roots of $y = 2x^2 + 5x + 18$?

(A) -2 (B)
$$-\frac{9}{10}$$
 (C) $-\frac{5}{18}$ (D) $\frac{5}{2}$ (E) NOTA

- 13. What is the magnitude of 6-8i?
 - (A) -2 (B) 8 (C) 6+8i (D) 10 (E) NOTA
- 14. What is the measure, in degrees, of the smaller angle in the complex plane between the x-axis and the position vector for the point $-2 + 2i\sqrt{3}$?
 - (A) 90° (B) 120° (C) 135° (D) 150° (E) NOTA
- 15. Which of the following is equal to $2e^{\frac{3\pi i}{2}}$
 - (A) -2i (B) $2 \operatorname{cis} 30^{\circ}$ (C) i-1 (D) $\operatorname{cis} 270^{\circ}$ (E) NOTA

16. Which of the following is equal to
$$\frac{2e^{\frac{3\pi}{2}i} \times e^{\frac{2\pi i}{3}}}{3e^{3\pi i}}?$$

(A) $\frac{2e^{-\frac{5\pi i}{6}}}{3}$ (B) $\frac{e^{-\frac{2\pi i}{3}}}{3}$ (C) $\frac{2e^{\frac{\pi i}{2}}}{3}$ (D) $e^{-\frac{2\pi i}{3}}$ (E) NOTA

17. Evaluate: (1	$(+i)^9$			
(A) 16–16 <i>i</i>	(B) –16–16 <i>i</i>	(C) –16+16 <i>i</i>	(D) 16+16 <i>i</i>	(E) NOTA
18. Which of the	e following are subsets I. The real num II. The complex III. The irration	s of the imaginary n bers x numbers al numbers	umbers?	
(A) I only	(B) II only	(C) I & III only	(D) II & III only	(E) NOTA
19. Which of the	e following are comple I. 4 II. i III. $4 + i$ IV. $4 - i$	ex numbers?		
(A) I & II only(C) II, III, & IV only		(B) III & IV only (D) I, II, III, & IV		(E) NOTA
20. Which of the	e following is a quadra I. $x^2 - 4x + 13 =$ II. $x^2 - 8x + 18 =$ III. $2x^2 + 8x - 3$	tic equation with ro = 0 = 0 B = 0	pots $4\pm i\sqrt{2}$?	
(A) I only	(B) II only	(C) III only	(D) I & III only	(E) NOTA
21. The equation value of k?	$1 2x^2 + kx - m = 0$, wh	ere k and m are inte	egers, has a root at 3	3+ki. What is

(A) 153 (B) $\sqrt{153}$ (C) 2m (D) -12 (E) NOTA

the

22. What is the sum of the real roots of $2x^3 + 3x^2 - 4x + 15 = 0$?

- (A) -3 (B) $\frac{3}{2}$ (C) $-\frac{3}{2}$ (D) 2 (E) NOTA
- 23. A cubic equation with integral coefficients has 6+8i as one of its roots, has a leading coefficient of 1, and the coefficient of the quadratic term is 10. What is the value of the constant term?
 - (A) 2200 (B) 1440 (C) -200 (D) -400 (E) NOTA

24.	Which of the follo	wing are square rowing are square rowing are square row I. $1-i$ II. $1+i$ III. $i-1$ IV. $-1-i$	bots of $-i$?					
	(A) I & III only (C) I, II, & III onl	у	(B) II & IV only (D) I, II, III, & IV	,	(E) NOTA			
25.	Which of the follo	owing are complex I. cis 60° II. cis 180° III. cis 270°	sixth roots of 1?					
	(A) I only	(B) I & II only	(C) I & III only	(D) I, II, & III	(E) NOTA			
26.	 Which of the following statements are true? I. Multiplication of complex numbers is commutative. II. The rational numbers are a subset of the complex numbers. III. The multiplicative inverse of a complex number <i>z</i> is equal to the complement of <i>z</i> divided by the magnitude of <i>z</i>. 							
	(A) II only	(B) I & II only	(C) II & III only	(D) I, II, & III	(E) NOTA			
27.	27. What is the sum of the five complex fifth roots of $2+i$?							
	(A) 0	(B) 1	(C) 2+ <i>i</i>	(D) 2- <i>i</i>	(E) NOTA			
28.	28. What is the product of the six complex sixth roots of $i - 12$?							
	(A) 1	(B) 12+ <i>i</i>	(C) 12- <i>i</i>	(D) <i>i</i> -12	(E) NOTA			
29.	29. Which of the following is not equal to $3e^{-\frac{4\pi i}{3}}$?							
	(A) $\frac{3}{2} + \frac{3\sqrt{3}}{2}i$	(B) 3 cis 120°	(C) $3e^{\frac{2\pi i}{3}}$	(D) $3e^{\frac{8\pi i}{3}}$	(E) NOTA			
30.	Consider two com $Z_2 = -1 - i$. By h	The problem is the problem in the problem is Z_1 ow many degrees is z_1 .	= a + bi (where <i>a</i> a must the vector from	and b are non-zero in the origin to Z_1 :	real numbers) a in the complex			

plane be rotated (counter-clockwise) to be aligned with the vector from the origin to Z_1Z_2 ?

and

(A) 45° (B) 150° (C) 225° (D) 270° (E) NOTA

31. Z_1 and Z_2 are nth roots of 1. Which of the following is not necessarily an nth root of 1?

(A)
$$Z_2 + Z_1$$
 (B) $Z_1 Z_2$ (C) $\frac{Z_1}{Z_2^3}$ (D) 1 (E) NOTA

- 32. A quartic equation with integer coefficients has 3i + 1 and 4 i as two of its roots. Given that the leading coefficient is 1, what is the coefficient of the quadratic term?
 - (A) -12 (B) -10 (C) -6 (D) 16 (E) NOTA
- 33. Which of the following are roots of $x^3 cx + k = 0$, given that 3 + 6i is a root and c and k are elements of the integers?
 - I. -6 II. 6 III. 6*i* - 3 IV. 3 - 6*i*

(A) IV only (B) I & IV only (C) II & IV only (D) III & IV only (E) NOTA

34. Evaluate: $\sum_{n=1}^{6} (2i)^n$ (A) 110 + 34*i* (B) 28 - 44*i* (C) - 52 + 26*i* (D) - 40 + 28*i* (E) NOTA 35. Evaluate: $\sum_{n=1}^{143} (i)^n$ (A) 1 (B) *i* (C) -1 (D) -*i* (E) NOTA

36. $Z_1Z_2 = 4 + 2i$ and $\frac{Z_2}{Z_1} = \frac{11+2i}{5}$. Determine all possible values of Z_2 .

- (A) $Z_2 \in \{3+i, 3-i\}$ (B) $Z_2 \in \{3+i\}$ (C) $Z_2 \in \{3+i, -3-i\}$ (D) $Z_2 \in \{3+i, \frac{3-i}{5}\}$ (E) NOTA
- 37. A teacher placed an equation of the form $x^2 + bx + c = 0$ on the board to be solved. Joe miscopied the value of *c* and got $5 \pm 2i$ as the roots. Jim miscopied the value of *b*, resulting in roots of $2 \pm i$. Julie copied the problem down correctly... What will she get for roots?
 - (A) $5 \pm 2\sqrt{5}$ (B) $2 \pm 2i\sqrt{5}$ (C) $2 \pm i\sqrt{5}$ (D) $5 \pm 2i\sqrt{5}$ (E) NOTA

- 38. Given that 2+i is a root of $x^3 rx^2 7x k = 0$, where *r* and *k* are integers, which of the following are also roots of the equation?
 - I. 2-*i* II. *i*-2 III. -3 (A) I only (B) II only (C) I & III only (D) II & III only (E) NOTA
- 39. Consider the equation $z^2 + (4-2i)z 8i = 0$ where z is a complex number. Let A be the root of greater magnitude, and B be the other root. Determine A B.
 - (A) 4i (B) -4-2i (C) 7-3i (D) 5+8i (E) NOTA
- 40. A sixth degree polynomial with a leading coefficient of 1 and rational coefficients has 8-2i and 3+i as roots, as well as a coefficient of 12 for its x^5 term. What is the largest possible value for the constant term?
 - (A) 196,520 (B) 204,000 (C) 220,320 (D) 224,400 (E) NOTA